

Eclipse in Action

Eclipse in Action
A GUIDE FOR JAVA DEVELOPERS

DAVID GALLARDO
ED BURNETTE

ROBERT MCGOVERN

With contributions to appendixes by
STEVEN HAINES

M A N N I N G
Greenwich

(74° w. long.)

For electronic information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2003 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books they publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Tiffany Taylor
209 Bruce Park Avenue Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-930110-96-0

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 08 07 06 05 04 03

 To my wife Eni and my son Alejandro
D.J.G.

To Lisa, Michael, and Christopher
E.B.B.

To my wife Roberta for putting up with this insane trip
R.M.

vii

PART 1 USING ECLIPSE... 1

1 ■ Overview 3

2 ■ Getting started with the Eclipse Workbench 13

3 ■ The Java development cycle: test, code, repeat 39

4 ■ Working with source code in Eclipse 79

5 ■ Building with Ant 103

6 ■ Source control with CVS 143

7 ■ Web development tools 177

PART 2 EXTENDING ECLIPSE .. 217

8 ■ Introduction to Eclipse plug-ins 219

9 ■ Working with plug-ins in Eclipse 249

brief contents

ix

foreword xvii
preface xxi
acknowledgments xxiii
about this book xxv
about the title xxix
about the cover illustration xxx

PART 1 USING ECLIPSE... 1

1 Overview 3
1.1 Where Eclipse came from 4

 A bit of background 5 ■ The Eclipse organization 5
Open source software 6

1.2 What is Eclipse? 7
The Eclipse architecture 8 ■ Language and platform
neutrality 10

1.3 What’s next 11
1.4 Summary 11

contents

x CONTENTS

2 Getting started with the Eclipse Workbench 13
2.1 Obtaining Eclipse 14

2.2 Eclipse overview 15
Projects and folders 15 ■ The Eclipse Workbench 16

2.3 The Java quick tour 20
Creating a Java project 20 ■ Creating a Java class 22
Running the Java program 25 ■ Debugging the Java
program 27 ■ Java scrapbook pages 30

2.4 Preferences and other settings 31
Javadoc comments 32 ■ Format style 33 ■ Code generation
templates 33 ■ Classpaths and classpath variables 35
Exporting and importing preferences 36

2.5 Summary 37

3 The Java development cycle: test, code, repeat 39
3.1 Java development tools methodology 40

Testing is job 1 41 ■ A sample application and working sets 41
3.2 The JUnit unit testing framework 43

Method stubs and unit tests 44 ■ Creating test cases 49
How much testing is enough? 54 ■ Implementing the public
methods 58

3.3 Further adventures in debugging 62
Setting breakpoint properties 64
Finding and fixing a bug 66

3.4 Logging with log4j 68
Loggers, appenders, and pattern layouts 69 ■ Configuring
log4j 73 ■ Using log4j with Eclipse 75

3.5 Summary 77

4 Working with source code in Eclipse 79
4.1 Importing an external project 80

4.2 Extending the persistence component 83
Creating a factory method 84 ■ Creating the unit test class 84
Working with the astronomy classes 85 ■ The Star test case 88
Creating a test suite 89 ■ Implementing the ObjectManager
class 90

CONTENTS xi

4.3 Refactoring 95
Renaming a class 96 ■ Extracting an interface 99
Future refactoring 101

4.4 Summary 102

5 Building with Ant 103
5.1 The need for an official build process 104

Creating the build directory structure 105
5.2 Make: A retrospective 109
5.3 The new Java standard: Ant 112

A very brief introduction to XML 113 ■ A simple Ant
example 115 ■ Projects 118 ■ Targets 119 ■ Tasks 119
Properties 126 ■ File sets and path structures 128
Additional Ant capabilities 131

5.4 A sample Ant build 131
Creating the build file, build.xml 132 ■ Performing a
build 136 ■ Debugging the build 138

5.5 Summary 140

6 Source control with CVS 143
6.1 The need for source control 144
6.2 Using CVS with Eclipse 146

Sharing a project with CVS 146 ■ Working with CVS 153
Versions and branches 170

6.3 Summary 174

7 Web development tools 177
7.1 Developing for the Web 178

The web, HTML, servlets, and JSP 178 ■ JSP overview 179
Servlet overview 181

7.2 Tomcat and the Sysdeo Tomcat plug-in 181
Installing and testing Tomcat 182 ■ Installing and setting up
the Sysdeo Tomcat plug-in 183 ■ Creating and testing a JSP
using Eclipse 185 ■ Creating and testing a servlet in
Eclipse 187 ■ Placing a Tomcat project under CVS
control 190

xii CONTENTS

7.3 Building a web application 191
The web application directory structure 191 ■ Web application
design and testing 192 ■ Programming with servlets and
JSPs 197

7.4 Wrapping up the sample application 210

7.5 Summary 215

PART 2 EXTENDING ECLIPSE .. 217

8 Introduction to Eclipse plug-ins 219
8.1 Plug-ins and extension points 220

Anatomy of a plug-in 220 ■ The plug-in lifecycle 221
Creating a simple plug-in by hand 222

8.2 The Plug-in Development Environment (PDE) 223
Preparing your Workbench 224 ■ Importing the SDK
plug-ins 224 ■ Using the Plug-in Project Wizard 226

8.3 The “Hello, World” plug-in example 228
The Plug-in Manifest Editor 230 ■ The Run-time
Workbench 231 ■ Plug-in class (AbstractUIPlugin) 233
Actions, menus, and toolbars
(IWorkbenchWindowActionDelegate) 237 ■ Plug-ins and
classpaths 241

8.4 The log4j library plug-in example 242
Attaching source 244 ■ Including the source zip in the plug-in
package 244

8.5 Deploying a plug-in 246
8.6 Summary 247

9 Working with plug-ins in Eclipse 249
9.1 The log4j integration plug-in example 250

Project overview 252 ■ Preparing the project 253
9.2 Editors (TextEditor) 254

Preparing the editor class 255 ■ Defining the editor
extension 255 ■ Adding an icon 259 ■ Adding color 261
Token manager 268 ■ Content assist
(IContentAssistProcessor) 271 ■ Putting it all together 275

CONTENTS xiii

9.3 Views (ViewPart) 279
Adding the view 280 ■ Modifying perspective defaults 281
View class 282 ■ Table framework 289 ■ Label providers
(LabelProvider) 296 ■ Models 298 ■ Receiver thread 300

9.4 Preferences (FieldEditorPreferencePage) 301
Main preference page 302 ■ Editor preference page 303

9.5 Plugin class 304
9.6 Summary 305

A Java perspective menu reference 307

B CVS installation procedures 323
B.1 Installing CVS on UNIX and Linux 324

Creating the CVS repository 325 ■ Setting up SSH remote
access 326 ■ Setting up pserver remote access 327

B.2 Installing CVS on Mac OS X 328

B.3 Installing CVSNT on Windows 329
B.4 Installing Cygwin CVS and SSH on Windows 330
B.5 Troubleshooting the CVS installation 332

B.6 Backing up the CVS repository 332

C Plug-in extension points 333

D Introduction to SWT 343
D.1 What is the Standard Widget Toolkit? 344

D.2 SWT architecture 345
Widget creation 346 ■ Resource disposal 346

D.3 SWT and events 347
D.4 SWT and threads 348

D.5 Building and running SWT programs 350
D.6 Using SWT 353

The BasicFramework class 353 ■ The MainApp class 356
Trying the example 359

xiv CONTENTS

E Introduction to JFace 361
E.1 Architecture 362

E.2 Building a JFace application 363
JFaceExample class 364 ■ ExitAction class 366

index 369

xv

foreword
Imagine my surprise when the editors asked me to write this foreword. I’m not
a guru, just a programmer who has used Eclipse every day for the last couple
of years. The biggest difference between you and me is that when I started,
there weren’t any books like this, so I had to dig a lot of the material you find
here out of the source code. A character-building exercise, to be sure, but I’d
much rather have had the book!

 This book will help you come up to speed fast on a great, free Java develop-
ment tool. The chapters on JUnit, Ant, and Team (CVS) integration in particu-
lar address areas where newcomers often have questions and need a little
boost to become productive. If you’re not already using these tools, you should
be. If you are, you’ll find out how Eclipse makes it easier to use them. The nuts
and bolts of programming—creating and maintaining projects, editing source
code, and debugging—are not neglected, and the section on refactoring will
introduce you to features that, if your previous tool didn’t have them, you will
soon wonder how you ever lived without.

 Eclipse has its own GUI framework called the Standard Widget Toolkit
(SWT), which is portable across all major platforms, runs fast, and looks native.
You can use SWT to develop your own applications, the same way you might use
AWT/Swing. A smaller framework named JFace, built on top of SWT, adds dia-
logs, wizards, models, and other essentials to the basic SWT widgets. These are
discussed in useful but not excruciating detail in appendixes you can also use
for reference.

xvi FOREWORD

 The book will be even more helpful if you have ambitions to go beyond using
Eclipse to extending it. I’m one of those people. For a long time there was no
good introduction to plug-in writing, which made it tough to get started; but
now there is. I hope you will give the chapters on extending Eclipse a fair chance
to excite you with the possibilities.

 I don’t know about you, but I’m never quite satisfied with the development tools
I use. No matter how great they are, something is always missing. I think most
developers are like that. We tend to fall in love with our favorite editor or IDE,
defend it staunchly in the newsgroups, and evangelize our friends relentlessly.
Yet, in our fickle hearts, we realize its many blemishes and shortcomings. That’s
why most developers are latent tool-builders. As Henry Petroski observed in The
Evolution of Useful Things, the mother of invention is not necessity, it is irritation.

 But usually our tool-building urges remain dormant, because of the great
effort required to duplicate the hundreds of things about our favorite tool that
are perfectly fine in order to fix the handful of things we find wanting. An open
source development tool like Eclipse, built from the ground up by extending a
very small nucleus with plug-ins, allows us to give vent to our frustrations in the
most productive way possible. By writing plug-ins, we can improve and extend
an already rich IDE, keeping all that is good about it. Moreover, we can readily
share our efforts with other users of the tool and take advantage of their efforts,
by virtue of the common platform that underlies all.

 I speak of irritation, but I wouldn’t write a plug-in for a tool I didn’t like much.
Eclipse has a lot to like. I won’t rattle off features; you will discover these for your-
self in the pages of this book or on your own. I’ll just mention one thing that strikes
me as extraordinary, even unique: the excellent technical support provided in the
Eclipse newsgroups by the actual people who wrote the code. I know of no commer-
cial product whose support is nearly as good, and no other open source project
whose developers are so committed to answering any and all questions thrown at
them. In many cases, questions are answered with source code written and tested
for the occasion. For a programmer, it doesn’t get much better than that.

 Taking advantage of these resources, people like you and me have written or
are in the process of writing a wide spectrum of plug-ins, ranging from hacks to
features to entire subsystems. One guy didn’t like the way the toolbar icons were
laid out, so he wrote a plug-in that arranged them as he preferred; it turned out
quite a few people agreed with him. I wrote an XML editor because there wasn’t a
decent one available at the time. Others are fitting in new programming lan-
guages, graphical editors, GUI builders. Developers in large companies are using
plug-ins to tailor Eclipse to corporate ways, like the source control system the VP
standardized on that no other tools seem to support. Graduate students are

FOREWORD xvii

using Eclipse as the platform for their thesis projects. The list goes on, and it is
always incomplete.

 You can even make money extending Eclipse. Eclipse is free, but its license
allows you to charge for your Eclipse-based extensions. (For complete licensing
details, use the Legal Stuff link on the eclipse.org web page.) There are four ways
to do this:

■ You can take Eclipse as a whole, strip out the parts you don’t want, add the
extensions you do want, and sell the result as your own product.

■ You can select parts of Eclipse, such as SWT and JFace (described in this book),
and use them to build your own applications that don’t necessarily have
anything to do with development tools.

■ You can sell individual plug-ins to the Eclipse community. (As you might
imagine, it takes a lot of added value to get people to pay for extensions to
free software, but I know of several projects underway, including my own,
that intend to test the waters.)

■ You can, with little extra effort, target your Eclipse plug-ins at the IBM
WebSphere Application Developer (WSAD) add-on market. WSAD is based
on Eclipse and is intentionally very compatible with it. (WSAD is Enterprise-
with-a-big-E software; customers are accustomed to paying.)

The only catch to all this generosity is you have to know how to take advantage of
it. This book will get you off and running. I heartily recommend it. I’ve been
writing Eclipse plug-ins since 2001, and this book taught me things I didn’t
know. The only negative thing I can think to say is that I’m a little envious that
readers will come up to speed so much faster than I did.

 Bob Foster
http://www.xmlbuddy.com/

xix

preface
This book began with a single author, David Gallardo, and a single purpose:
to introduce Java developers to Eclipse. Initial feedback from early reviewers
made it apparent that there was also a lot of interest in developing plug-ins to
extend Eclipse and in using Eclipse’s graphics libraries in other projects. The
March 2003 release of Eclipse 2.1, which the book targeted, was approaching
quickly, so the call went out for help.

 Ed Burnette, who was interested in the potential of technologies behind
Eclipse and the applications they could power, was recruited to expand the cov-
erage of Eclipse plug-ins. Robert McGovern, the technical editor (who seem-
ingly needs no sleep), stepped up to the plate to produce two appendixes on
SWT and JFace, using source material graciously provided by Steven Haines.
The expanded team permitted us to cover both using and extending Eclipse
more thoroughly than would otherwise have been possible.

 In the spirit of agile development, the first sample application—a file-based
persistence component—was begun with little up-front design. The first part
of the book accurately depicts its evolution, warts and all. The source code for
each stage of the application is available on this book’s web site (http://www.
manning.com/gallardo), including a final version that corrects the flaws that
appear when it is extended to support a database.

 Although we introduce and demonstrate the tools and techniques for agile
development, and we recommend this approach, this isn’t an agile development

xx PREFACE

primer. The material, like Eclipse itself, is equally applicable to other methodol-
ogies—or no methodology at all.

 Eclipse includes a lot of information to cover. One of the big debates we had
in creating the book was how to balance the information in the book with the
online documentation. Where practical, we avoid duplicating information that is
readily available in the online documentation (for example, we considered—but
dropped—a list of all the SWT widgets). We feel that a concise guide is more use-
ful (and readable!) than an 800-page behemoth any day.

 We learned a lot while writing Eclipse in Action—about Eclipse, about ourselves,
and about the effects of sleep deprivation. Overall, we had great fun doing it. We
hope you’ll find the book helpful in whatever projects you create, and that you
have as much fun reading it as we did writing it!

xxi

acknowledgments
The authors would like to acknowledge and thank all the people who helped
make this book a reality:

 The staff at Manning who gave us this opportunity: Marjan Bace, Susan
Capparelle, Dave Roberson, and in memoriam, Ted Kennedy. The production
staff took our raw words, worked their magic, and transformed them into the
book you now hold: Gil Schmidt, Tiffany Taylor, Denis Dalinnik, Syd Brown,
Mary Piergies, Helen Trimes, Leslie Haimes, and Iain Shigeoka.

 Our reviewers, Christophe Avare, Dan Dobrin, Bob Donovan, Bob Foster,
Phil Hanna, Carl Hume, Michiel Konstapiel, Jason Kratz, James Poli, Eric
Rizzo, and Cyril Sagan, provided invaluable guidance in focusing on the right
topics and in getting the technical details right. We would also like to acknowl-
edge the valuable contribution that Steve Haines made to our coverage of
SWT and JFace.

 The Eclipse community, particularly those members participating in the
Eclipse newsgroups, provided valuable assistance and technical insight. The
Straight Talking Java list provided us a more collegial environment to discuss
matters technical and topical, a sort of virtual watercooler. We would also like
to thank the Eclipse team for creating an incredible product.

 David and Ed would like to thank Robert McGovern, who first came on
board as a reviewer of the manuscript in its early stages and then did the tech-
nical editing of the code and text, before finally jumping in to help write the

xxii ACKNOWLEDGMENTS

appendixes that were falling behind schedule. The many late nights he dedicated
to the project and his excellent insights and comments are much appreciated,
and resulted in a much better book than we could otherwise have hoped for.

 David Gallardo would like to thank Ed Burnette for the expertise, careful eye,
and insight Ed provided in his reviews and for the consistency and coherence Ed
established in his own work; Tiffany Taylor for the fine job she did in pruning his
prose; and Mary Piergies for keeping him on track. Most of all, David would like
to thank his wife Eni for her patience.

 Ed Burnette would like to thank his wife Lisa for keeping the house together
and putting up with his late nights, Duane Ressler and Paul Kent for providing a
constructive work environment that allows for exploration, and Clay Andres for
inviting him along for the ride.

 Robert McGovern would like to thank David and Ed for letting him join in the
fun and games, Mary Piergies for leading him through, and the rest of the fantas-
tic team at Manning. Special thanks to Joy, Kieran, Samuel, and finally to Rob-
erta, his wife, for her understanding and encouragement.

xxiii

about this book
This book is designed to help you use Eclipse to its fullest potential. Its pri-
mary focus is using Eclipse as a Java IDE, but for more advanced developers,
additional information is provided to help you extend Eclipse for other lan-
guages and applications.

How the book is organized

This book has two parts, nine chapters, and five appendices. Part 1 is for those
who want to develop Java code using Eclipse as an IDE:

■ Chapter 1 provides an introduction to the Eclipse project, how it got
started, how it’s designed, and where it’s headed.

■ Chapter 2 covers how to obtain and install Eclipse, how to use it to cre-
ate and debug Java programs, and some of the most important options
and preferences.

■ Chapter 3 delves into best practices of Java development supported by
Eclipse, including unit testing, debugging, and logging.

■ Chapter 4 uses an example application to show you how to arrange your
project and use the Java toolkit’s impressive refactoring support.

■ Chapter 5 talks about Ant, the open source building tool. You’ll learn
some background about what Ant is and how it’s integrated into Eclipse.

xxiv ABOUT THIS BOOK

■ Chapter 6 discusses CVS, a source code repository supported by Eclipse.
You’ll learn how to share projects, check projects in and out, and deal with
conflicts when more than one person makes a change to the source.

■ Chapter 7 shows you how Eclipse supports JSP and servlet web develop-
ment through third-party plug-ins such as Sysdeo and XMLBuddy. An
example web site is carried through the stages of design, development,
debugging, and testing.

Part 2 is for those wanting to extend Eclipse with new functionality:

■ Chapter 8 introduces Eclipse plug-ins and the Plug-in Development Envi-
ronment. You’ll learn how to create simple plug-ins and deploy them so
others can use them.

■ Chapter 9 explores the code of a more advanced plug-in, showing you how
to create a custom editor, a viewer, and preference pages.

The appendixes provide more detailed information that supports the rest of
the book:

■ Appendix A is a quick reference to Eclipse’s Java-related menus.
■ Appendix B discusses installing a CVS server on different operating systems.
■ Appendix C has a table of all extension points provided by the Eclipse

Platform.
■ Appendix D covers the Standard Widget Toolkit used as the basis of the

Eclipse user interface.
■ Appendix E introduces JFace, a higher-level user interface toolkit built on SWT.

Who should read this book
Eclipse in Action is for Java programmers at all levels who would like to learn how
to use and extend Eclipse or use Eclipse technologies in their own projects. Begin-
ning and intermediate programmers will appreciate the advice on unit testing,
logging, and debugging, and the clear, step-by-step instructions on using the
Java tools provided within Eclipse. Advanced developers will relish the detailed
plug-in examples. Even people who have been using Eclipse for some time will
find numerous tricks and tips they didn’t know before.

How to use this book
If you are new to Eclipse, you should begin with chapters 1–6. This section of the
book will take you through the process of learning about Eclipse and commonly
accepted best practices regarding tools and programming techniques. You may

ABOUT THIS BOOK xxv

find appendixes D and E useful if you want to build a standalone program that
uses the Eclipse GUI toolkits instead of Swing. When you feel confident about your
Eclipse Java skills, you should move on to chapter 7, where you will learn how to
do web development in Eclipse.

 If you’ve used Eclipse before but you want to extend its functionality, then you
should read chapters 8 and 9. There you will be taken through the process of
developing, integrating, and running a plug-in. If the plug-in you are develop-
ing needs to interact with Eclipse’s user interface, then you should examine
appendixes D and E to understand a little about the technologies that make up
the Eclipse UI. You will also find that appendix C is a handy reference that lists
in one table all the places you can extend Eclipse.

Source code

This book contains extensive source code examples of normal Java programs,
Eclipse plug-ins, and standalone SWT/JFace programs. All code examples can be
found at the book’s web site at http://www.manning.com/gallardo.

Typographical conventions
The following conventions are used throughout the book:

■ Italic typeface is used to introduce new terms.
■ Bold type indicates text that you should enter.
■ Courier typeface is used to denote code samples, as well as elements and

attributes, method names, classes, interfaces, and other identifiers.
■ Bold face Courier identifies sections of code that differ from previous, sim-

ilar code sections.
■ Code annotations accompany many segments of code. Certain annotations

are marked with bullets such as . These annotations have further expla-
nations that follow the code.

■ The → symbol is used to indicate menu items that should be selected in
sequence.

■ Code line continuations use the ➥ symbol.

Other conventions: plug-in or plugin?
Look for the word on Google and you will see that most people use “plugin.”
Our publisher would have preferred us to have used the unhyphenated form of
the word—a printed page looks more peaceful to the eye without the hyphens

 B

xxvi ABOUT THIS BOOK

disturbing the flow of letters and words, and it’s quicker to type. However, the
hyphenated form is used in the product itself, and, in a tip-of-the-hat to the pref-
erences of the creators of Eclipse, we have consistently used it in this book when
referring to plug-ins in general. We do use “plugin” in a few cases, when refer-
ring to specific filenames and directories that don’t include the hyphen—for
example, the plugins directory in which Eclipse plug-ins are installed, and the
plugin.xml manifest file.

Online resources

Several excellent resources are available:

■ Manning’s Author Online forum provides a venue where readers can ask
questions of the authors and discuss the book with the authors and with
other readers. You can register for the Eclipse in Action forum at http://www.
manning.com/gallardo.

■ The Eclipse project web site is http://www.eclipse.org. It contains a number
of articles and examples on using and extending Eclipse. You can also find
a bug database where you can report bugs and feature requests or vote for
your favorites, as well as a searchable index.

■ Eclipse newsgroups are hosted on the news.eclipse.org server. To help pre-
vent spam, the groups are password protected. For further instructions,
including how to get the password, see http://www.eclipse.org/newsgroups.

■ EclipseWiki (http://eclipsewiki.swiki.net) is a useful site that contains a lot of
information about the Eclipse project and its many subprojects. It is loaded
with tips and tricks, many of them gleaned from the Eclipse newsgroups.

xxvii

about the title
By combining introductions, overviews, and how-to examples, Manning’s In
Action books are designed to help learning and remembering. According to
research in cognitive science, the things people remember are things they dis-
cover during self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that
for learning to become permanent it must pass through stages of exploration,
play, and, interestingly, retelling of what is being learned. People understand and
remember new things—which is to say they master them—only after actively
exploring them. Humans learn in action. An essential part of an In Action guide
is that it is example-driven. It encourages the reader to try things out, to play
with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our read-
ers are busy. They use books to do a job or to solve a problem. They need books
that allow them to jump in and jump out easily and learn just what they want
just when they want it. They need books that aid them in action. The books in
this series are designed for such readers.

xxviii

about the cover illustration
The figure on the cover of Eclipse in Action is a “Iudio de los estados Mahomen-
tanos,” a Jewish trader from the Middle East. The illustration is taken from a
Spanish compendium of regional dress customs first published in Madrid in
1799. The book’s title page states:

Coleccion general de los Trages que usan actualmente todas las Nacionas del Mundo
desubierto, dibujados y grabados con la mayor exactitud por R.M.V.A.R. Obra muy
util y en special para los que tienen la del viajero universal

which we translate, as literally as possible, thus:

General collection of costumes currently used in the nations of the known world,
designed and printed with great exactitude by R.M.V.A.R. This work is very useful
especially for those who hold themselves to be universal travelers

Although nothing is known of the designers, engravers, and workers who col-
ored this illustration by hand, the “exactitude” of their execution is evident in
this drawing. The “Iudio de los estados Mahomentanos” is just one of many
figures in this colorful collection. Their diversity speaks vividly of the unique-
ness and individuality of the world’s towns and regions just 200 years ago.
This was a time when the dress codes of two regions separated by a few dozen
miles identified people uniquely as belonging to one or the other. The collec-
tion brings to life a sense of isolation and distance of that period—and of
every other historic period except our own hyperkinetic present.

ABOUT THE COVER ILLUSTRATION xxix

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and inter-
esting intellectual and technical life.

 In spite of the current downturn, we at Manning continue to celebrate the inven-
tiveness, the initiative and, yes, the fun of the computer business with book covers
based on the rich diversity of regional life of two centuries ago‚ brought back to
life by the pictures from this collection.

Part 1

Using Eclipse

The first part of this book will get you started developing Java code in
Eclipse quickly and efficiently. Chapters 1 and 2 provide an introduction to
Eclipse—its history, how to obtain and install it, and how to use it to create
and debug Java projects. Chapters 3 and 4 delve into the best practices of Java
development, including unit testing and refactoring. Chapters 5 and 6 are
dedicated to two tools no programmer or development team should be with-
out—Ant and CVS—and how Eclipse provides first-class integration with these
tools. Finally, Chapter 7 introduces the Sysdeo Tomcat plug-in and shows how
to use it for Java servlet and JSP web development. Throughout these chapters,
you’ll find hints and tips about using Eclipse and some best practices for devel-
oping code that the authors have discovered through their extensive program-
ming experience.

3

1Overview

In this chapter…
■ A brief history of Eclipse
■ The Eclipse.org consortium
■ An overview of Eclipse and its design
■ A peek at the future

4 CHAPTER 1
Overview

Many blacksmiths take pride in making their own tools. When first starting out
in the trade, or when undertaking a job that has special requirements, making
new tools is the first step. Using forge, anvil, and hammer, the blacksmith
repeats the cycle of heating, hammering, and cooling the steel until it becomes a
tool of exactly the right shape, size, and strength for the job at hand.

 Software development seems like a clean and abstract process when com-
pared to the visceral force and heat of blacksmithing. But what code has in com-
mon with metal (at least at high temperatures) is malleability: With sufficient
skill and effort, you can bang code or steel into a finely honed tool or a massive
architectural wonder.

 Eclipse is the software developer’s equivalent to the blacksmith’s workshop,
initially equipped with forge, anvil, and hammer. Just as the blacksmith might
use his existing tools to make a new tool, perhaps a pair of tongs, you can use
Eclipse to build new tools for developing software—tools that extend the func-
tionality of Eclipse. One of Eclipse’s distinguishing features is its extensibility.

 But don’t be put off by this do-it-yourself ethos; you don’t need to build your
own tools to take full advantage of Eclipse. You may not even need any new tools;
Eclipse comes with a fully featured Java development environment, including a
source-level debugger. In addition, because of Eclipse’s popularity and its open-
source nature, many specialized tools (built for Eclipse, using Eclipse) are
already freely available (some of which you’ll be introduced to in this book), and
many more are on the way.

1.1 Where Eclipse came from

It would be incredible for a software development environment as full-featured
and mature as Eclipse to appear out of the blue. But that is what seemed to have
happened when version 1.0 was released in November 2001. Naturally, there was
some carping about the approach Eclipse took and the features it lacked. Since
the days of emacs, one of the two most popular sports among developers has
been debating which development environment is the best. (The other is debat-
ing which operating system is the best.) Surprisingly, there was little of the usual
contentiousness this time. The consensus seemed to be that Eclipse was almost,
but not quite there yet; what version 1.0 product is?

 Some companies are famously known for not getting things right until ver-
sion 3.0 (and even then you’re well advised to wait for 3.1, so the serious bugs get
shaken out). But though Eclipse 1.0 lacked some features and didn’t quite accom-
modate everyone’s way of working, it was apparent that Eclipse got things right.

Where Eclipse came from 5

Best of all, it was a free, open source project with a lot of resources. It was also
apparent that Eclipse’s developers were listening to the users—indeed, the devel-
opers themselves were the biggest users of Eclipse. When version 2.1 arrived in
March 2003, it met or surpassed almost everyone’s high hopes—so many people
rushed to download it that it was nearly impossible to get a copy for the first
week of release.

1.1.1 A bit of background

Eclipse wasn’t a happy accident of engineering, of course; IBM reportedly spent
more than $40 million developing it before giving it away as open source soft-
ware to a consortium, Eclipse.org, which initially included Borland, IBM, Merant,
QNX Software Systems, Rational Software, Red Hat, SuSE, TogetherSoft, and Web-
gain. Other companies that have since joined include Hewlett Packard, Fujitsu,
Oracle, and Sybase. IBM continues to take the lead in Eclipse’s development
through its subsidiary, Object Technologies International (OTI), the people who
developed Eclipse in the first place.

 OTI is a distinguished developer of object-oriented development tools, with a
history going back to 1988, when the object-oriented language of choice was
Smalltalk. OTI, acquired by IBM in 1996, was the force behind IBM’s Visual Age
products, which set the standard for object-oriented development tools. Many
concepts pioneered in Smalltalk were applied to Java, making Visual Age for
Java (VA4J) a unique environment. For example, it had no concept of a file; ver-
sioning took place at the method level. Like the other Visual Age products, VA4J
was originally written in Smalltalk.

 Eclipse is essentially a rewrite of VA4Java in Java. Smalltalk-like features,
which made VA4J seem quirky compared to other Java IDEs, are mostly gone.
Some OO purists are disappointed, but one of the things that has made Java
popular is its willingness to meet practicalities halfway. Like a good translation,
Eclipse is true to the spirit of its new language and strikes a similar balance
between ideology and utility.

1.1.2 The Eclipse organization

The Eclipse project is managed and directed by the consortium’s Board of Stew-
ards, which includes one representative from each of the consortium’s corporate
members. The board determines the goals and objectives of the project, guided
by two principal objectives that it seeks to balance: fostering a healthy open
source community and creating commercial opportunities for its members.

6 CHAPTER 1
Overview

 At the operational level, the Eclipse project is managed by the Project Man-
agement Committee (PMC), which oversees the project as a whole. The Eclipse
project is divided into three subprojects:

■ The Platform
■ The Java Development Toolkit (JDT; notably led by Erich Gamma, who is well-

known for his work on design patterns and agile development methodology)
■ The Plug-in Development Environment (PDE)

Each of these subprojects is further subdivided into a number of components.
For example, the Platform subproject includes over a dozen components such as
Compare, Help, and Search. The JDT subproject includes three components:
Debug (which provides debug support for Java), UI, and Core. The PDE sub-
project includes two components: UI and Core.

 Contributions to the project are not limited to IBM and consortium members.
As is true with any other open source project, any individual or company is wel-
come to participate and contribute to the project.

1.1.3 Open source software

Many commercial ventures are concerned about the growing influence of open
source development and have done their best to spread fear, uncertainty, and
doubt about this trend. One particularly misleading claim is that open source
licenses are viral in nature—that by incorporating open source code in a com-
mercial product, a company risks losing rights to its proprietary code.

 Open source, by definition, is software that grants certain rights to users, nota-
bly the right to the obtain source code and the right to modify and redistribute
the software. These rights are guaranteed by reversing the purpose of copyright
protection. Rather than merely reserving rights for the creator, an open source
license prohibits distribution unless the user is granted these rights. This use of a
copyright is sometimes called a copyleft—all rights reversed.

 Although some open source licenses are viral and require that all software
bundled with the open source software be released under the same license, this is
not true of all open source licenses. A number of licenses have been designed to
support both open source and commercial interests and explicitly allow propri-
etary software that is bundled with open source software to be licensed under a
separate, more restrictive license.

 Eclipse, specifically, is distributed under such as license: the Common Public
License (CPL). According to the license, it “is intended to facilitate the commer-

What is Eclipse? 7

cial use of the Program.” The CPL is certified as meeting the requirements of an
open source license by the Open Software Initiative (OSI). For more information
about open source licenses, including the CPL, you can visit the OSI web site at
http://www.opensource.org.

 Many open source advocates are wary that commercial interests are co-opting
the purpose of the open source movement, and are cynical of companies such as
IBM that are materially aiding open source projects. There is no doubt, however,
that open source software gains legitimacy from the backing of a major corpora-
tion such as IBM. This legitimacy helps dispel some of the weaker claims of
opponents (particularly subjective attacks such as the notion that the software is
hobbyware) and force the argument to remain focused on more substantial
issues, such as performance and security.

 A number of projects, including Mozilla, Apache, and now Eclipse, demonstrate
that both commercial and free software can benefit from being open source.
There are several reasons, but in particular, a successful open source project cre-
ates value for everyone.

 In the case of Eclipse, there is another, more tangible reason: Eclipse creates
an entire new market. Making Eclipse the best-designed open and extensible
framework is like building a town market. Vendors and buyers large and small
will be drawn together on market day.

1.2 What is Eclipse?

So far we’ve alluded to Eclipse in metaphorical terms, comparing it to a black-
smith’s shop, where you can not only make products, but also make the tools for
making the products. In practical terms, that’s probably a fair comparison. When
you download the Eclipse SDK, you get a Java Development Toolkit (JDT) for
writing and debugging Java programs and the Plug-in Development Environ-
ment (PDE) for extending Eclipse. If all you want is a Java IDE, you don’t need
anything besides the JDT; ignore the PDE, and you’re good to go. This is what
most people use Eclipse for, and the first part of this book focuses entirely on
using Eclipse as a Java IDE.

 The JDT, however, is an addition to Eclipse. At the most fundamental level,
Eclipse is the Eclipse Platform. The Eclipse Platform’s purpose is to provide the
services necessary for integrating software development tools, which are imple-
mented as Eclipse plug-ins. To be useful, the Platform has to be extended with
plug-ins such as the JDT. The beauty of Eclipse’s design is that, except for a small
runtime kernel, everything is a plug-in or a set of related plug-ins. So, whereas

8 CHAPTER 1
Overview

the Eclipse SDK is like the blacksmith’s shop, the Eclipse Platform it is based on
is more like an empty workshop, with nothing but electrical, water, and gas hook-
ups. If you’d rather be a potter than a blacksmith, then install a kiln and a potter’s
wheel, get some clay, and start throwing pots. If you only want to use Eclipse for
C/C++ development, then replace the JDT with the C Development Toolkit (CDT).

 This plug-in design makes Eclipse extensible. More important, however, the
platform provides a well-defined way for plug-ins to work together (by means of
extension points and contributions), so new features can be added not only easily
but seamlessly. As you perform different tasks using Eclipse, it is usually impossi-
ble to tell where one plug-in ends and another begins.

1.2.1 The Eclipse architecture

In addition to the small platform runtime kernel, the Eclipse Platform consists of
the Workbench, workspace, help, and team components. Other tools plug in to
this basic framework to create a usable application. (See figure 1.1.)

The Platform runtime
The primary job of the Platform runtime is to discover what plug-ins are avail-
able in the Eclipse plug-in directory. Each plug-in has an XML manifest file that
lists the connections the plug-in requires. These include the extension points it
provides to other plug-ins, and the extension points from other plug-ins that it
requires. Because the number of plug-ins is potentially large, plug-ins are not
loaded until they are actually required, to minimize start-up time and resource

Figure 1.1
The Eclipse architecture.
Except for a small runtime
kernel, everything in
Eclipse is a plug-in or a
set of related plug-ins.

What is Eclipse? 9

requirements. The second part of this book focuses on the architecture of plug-ins,
additional details about how they work, and how to develop them using the PDE.

The workspace
The workspace is responsible for managing the user’s resources, which are orga-
nized into one or more projects at the top level. Each project corresponds to a
subdirectory of Eclipse’s workspace directory. Each project can contain files and
folders; normally each folder corresponds to a subdirectory of the project direc-
tory, but a folder can also be linked to a directory anywhere in the filesystem.

 The workspace maintains a low-level history of changes to each resource. This
makes it possible to undo changes immediately, as well as revert to a previously
saved state—possibly days old, depending on how the user has configured the
history settings. This history also minimizes the risk of losing resources.

 The workspace is also responsible for notifying interested tools about changes
to the workspace resources. Tools have the ability to tag projects with a project
nature—as a Java project, for example—and can provide code to configure the
project’s resources as necessary.

The Workbench
The Workbench is Eclipse’s graphical user interface. In addition to displaying the
familiar menus and toolbars, it is organized into perspectives containing views
and editors. These are discussed in chapter 2.

 One of the Workbench’s notable features is that, unlike most Java applications,
it looks and feels like a native application. This is the case because it is built using
Eclipse’s Standard Widget Toolkit (SWT) and JFace, a user interface toolkit built
on top of SWT. Unlike the standard Java graphics APIs, AWT and Swing, which
emulate the native graphics toolkit, SWT maps directly to the operating system’s
native graphics.

 SWT is one of the most controversial aspects of Eclipse, because SWT must be
ported to each platform that Eclipse supports. As a practical matter, this isn’t a
serious concern, because SWT has already been ported to the most popular plat-
forms (including Windows, Linux/Motif, Linux/GTK2, Solaris, QNX, AIX, HP-UX,
and Mac OS X).

 It is possible to use SWT and JFace to create your own native-looking Java appli-
cations. An introduction to programming with SWT is found in appendix D of this
book, and a brief overview of JFace is presented in appendix E. Note that Eclipse’s
use of SWT/JFace doesn’t force you to use it in your applications; unless you are
writing a plug-in for Eclipse, you can continue to program with AWT/Swing as usual.

10 CHAPTER 1
Overview

Team support
The team support plug-in facilitates the use of a version control (or configuration
management) system to manage the resources in a user’s projects and define the
workflow necessary for saving to and retrieving from a repository. The Eclipse
Platform includes a client for Concurrent Versions System (CVS). CVS is the sub-
ject of chapter 6.

Help
Like the Eclipse Platform itself, the help component is an extensible documenta-
tion system. Tool providers can add documentation in HTML format and, using
XML, define a navigation structure. Mirroring the way plug-ins connect to other
plug-ins, tools documentation can insert topics into a preexisting topic tree.

1.2.2 Language and platform neutrality

Although Eclipse is written in Java and its most popular use is as a Java IDE, it is
language neutral. Support for Java development is provided by a plug-in com-
ponent, as mentioned previously, and additional plug-ins are available for other
languages, such as C/C++, Cobol, and C#.

 Eclipse is also neutral with regard to human languages. The same plug-in
mechanism that lets you add functionality easily can be used to add different lan-
guages, using a special type of plug-in called a plug-in fragment. IBM has donated
a language pack that provides support for Chinese (traditional and simplified),
French, German, Italian, Japanese, Korean, Portuguese (Brazilian), and Spanish.
You can download the language pack from the Eclipse downloads page at http://
www.eclipse.org.

 Although written in Java, which in principle allows a program to run on any
platform, Eclipse is not strictly platform neutral. This is due to the decision to
build Eclipse using the operating system’s native graphics. Eclipse is therefore
only available for those platforms to which SWT has been ported (listed earlier).

 If your platform is not on the officially supported list, however, things may
not be as dire as they seem. Because Eclipse is an open source project, the source
code is available, and others have ported Eclipse to additional platforms; you
may be able to find such a port by searching the Eclipse newsgroups. Sometimes
these ports are contributed back to Eclipse and become part of the official
Eclipse build. As a last resort, if you are ambitious enough, perhaps you might port
Eclipse yourself.

Summary 11

1.3 What’s next

One of the most frequently requested features for Eclipse is a GUI builder—a
graphical tool for building user interfaces. It seems unlikely that this and other
features that have a high perceived value (such as J2EE and data modeling capa-
bilities) will ever become part of the official, free version of Eclipse, due largely
to the fact that the Eclipse.org consortium must balance commercial concerns
with the desires of the open source community.

 Such needs are being filled in several ways: commercial offerings, such as
IBM’s Websphere Studio Application Developer, which (at a cost) provide these
features as part of a comprehensive Eclipse-based development suite; free or
low-cost commercial plug-ins, such as Lomboz for J2EE and the Sysdeo Tomcat
plug-in (covered in chapter 7); and open source projects.

 Planning for the next version of Eclipse, due sometime in 2004, is currently
underway. Some ideas being considered include:

■ Generalizing the Eclipse platform as a general application framework. It’s
currently possible to use the Eclipse Platform this way, but doing so
requires some effort, because it is specifically designed for building IDEs.

■ Adding support for Java-related languages such as JSP and providing bet-
ter integration with plug-in manifest files and J2EE descriptors.

■ Supporting J2SE 1.5, which is expected to include (in part) generic types
and enumerations.

■ Logical viewing of Java objects, such as showing HashMaps as tables of key-
value pairs.

The Eclipse web site is the best source for additional information about Eclipse.
If you are interested in discussing new features or want to learn more about exist-
ing features, visit the newsgroups page to learn how to join the newsgroups. Visit
the community page to find new plug-ins. You can also report bugs or request
specific features by using the bugs page.

1.4 Summary

If you are looking for a good, free Java IDE, you don’t need to look any further
than Eclipse. The Eclipse Software Development Kit (SDK), which you can down-
load for free from the Eclipse web site, includes a feature-rich Java IDE, the Java
Development Toolkit (JDT). The first part of this book (chapters 2–7) covers the
use of the Eclipse JDT.

12 CHAPTER 1
Overview

 Eclipse is not just a Java IDE, however, it is actually less than that (or, depend-
ing on your point of view, more than that). It is an extensible, open source plat-
form for development tools. For example, IDEs are available for other languages,
such as C/C++, Cobol, and C#.

 Eclipse’s distinguishing feature is its extensibility. Fundamentally, Eclipse is
nothing but a framework for plug-ins; except for a small runtime kernel, every-
thing in Eclipse is implemented as plug-ins. Because the platform specifies the
ways for plug-ins to interact with one another, new features integrate seamlessly
with the existing features.

 In addition to the JDT, the Eclipse SDK also includes a Plug-in Development
Environment (PDE). The PDE makes it easy to develop plug-ins for Eclipse. The
second part of this book (chapters 8 and 9) covers the use of the PDE and shows
you how to build a tool that adds new logging capabilities to Eclipse.

 Although Eclipse is open source, it’s managed and directed by a consortium
of software development companies with a commercial interest in promoting
Eclipse as a shared platform for software development tools. Eclipse is licensed
under the Common Public License, which, unlike some open source licenses, is
not viral—that is, it does not require that software incorporating Eclipse technol-
ogy be licensed under an open source license as well. By creating and fostering
an open source community based on Eclipse, IBM and the other companies in
the consortium hope the result will be symbiosis, rather that conflict, resulting in
a large new marketplace for both free and commercial software that is either
based on Eclipse or extends Eclipse.

 Whether you use Eclipse as a development platform for developing your own
software or as the basis for building free or commercial tools, you will find that it
has much to offer. As you explore its many features in the chapters that follow, we
will guide you in using Eclipse effectively throughout the development process.
Along the way, we will point out many of the ways it can help you to be a more
productive Java developer.

13

2Getting started with
the Eclipse Workbench

In this chapter…
■ Downloading and installing Eclipse
■ Essential Eclipse Workbench concepts, including

perspectives, views, and editors
■ Creating, running, and debugging a Java

program
■ Customizing Eclipse preferences and settings,

including code format style and classpath
variables

■ Creating and modifying code generation
templates

14 CHAPTER 2
Eclipse Workbench

Getting started is often the hardest part of a journey. Mostly this isn’t due to any
real obstacle, but rather to inertia. It’s easy to get set in your ways—even when
you know that adventure waits. Eclipse is the new land we'll be exploring here.
After downloading Eclipse and getting your bearings, you’ll find that you’ll soon
be on your way, coding and debugging with ease.

2.1 Obtaining Eclipse

The first step toward getting started with Eclipse is to download the software
from the Eclipse.org web site’s download page at http://www.eclipse.org/
downloads. Here you’ll find the latest and the greatest versions—which are not
usually the same things—as well as older versions of Eclipse. Basically, four types
of versions, or builds, are available:

■ Release—A stable build of Eclipse that has been declared a major release by
the Eclipse development team. A release build has been thoroughly tested
and has a coherent, well-defined set of features. It’s equivalent to the
shrink-wrapped version of a commercial software product. At the time of
this writing, the latest release is 2.1, released March 2003; this is the release
we will be using throughout this book.

■ Stable build—A build leading up to a release that has been tested by the
Eclipse development team and found to be relatively stable. New features
usually first appear in these intermediate builds. These builds are equiva-
lent to the beta versions of commercial software products.

■ Integration build—A build in which Eclipse’s individual components are
judged to be stable by the Eclipse developers. There is no guarantee that
the components will work together properly, however. If they do work
together well, an integration build may be promoted to stable build status.

■ Nightly build—A build that is (obviously) produced every night from the lat-
est version of the source code. As you may guess, there are absolutely no
guarantees about these builds—in fact, you can depend on their having
serious problems.

If you are at all risk-averse (perhaps because you are on tight schedule and can’t
afford minor mishaps), you’ll probably want to stick to release versions. If you are
a bit more adventurous, or must have the latest features, you may want to try a
stable build; the stable builds immediately before a planned release build usually
offer the best feature-to-risk ratio. As long as you are careful to back up your
workspace directory, these are a fairly safe bet. You can find out more about the

Eclipse overview 15

Eclipse team’s development plans and the development schedule at http://
www.eclipse.org/eclipse/development/main.html.

 After you choose and download the best version for you, Eclipse installation
consists of unzipping (or untarring, or whatever the equivalent is on your plat-
form) the downloaded file to a directory on your hard disk. Eclipse, you’ll be
happy to learn, won’t infect your system by changing your registry, altering your
environment variables, or requiring you to re-boot. The only drawback is that
you’ll have to navigate your filesystem searching for the Eclipse executable to
start it. If you don’t want to do this each time you use Eclipse, you can create a
shortcut to it, or put it on your path. For example, in Windows, after you find the
Eclipse executable (eclipse.exe) using the Windows Explorer, right-click on it and
select Create Shortcut. Doing so will create a shortcut in the Eclipse directory
that you can drag to your desktop or system tray. On UNIX and Linux platforms,
you can either add the Eclipse directory to your path or create a symbolic link
(using ln –s) for the executable in a directory already in your path (for instance,
/home/<user>/bin).

2.2 Eclipse overview

The first time you start Eclipse, it will ask you to wait while it completes the instal-
lation. This step (which only takes a moment) creates a workspace directory under-
neath the Eclipse directory. By default, all your work will be saved in this directory.
If you believe in backing up your work on a regular basis (and you should), this is
the directory to back up. This is also the directory to take with you when you
upgrade to a new version of Eclipse.

 You need to check the release notes for the new release to make sure it sup-
ports workspaces from prior versions; but barring any incompatibility, after you
unzip the new version of Eclipse, simply copy the old workspace subdirectory to
the new Eclipse directory. (Note that all your preferences and save perspectives
will also be available to you, because they are stored in the workspace directory.)

2.2.1 Projects and folders

It’s important to know where your files are located on your hard disk, in case you
want to work with them manually, copy them, or see how much space they take
up. However, native filesystems vary from operating system to operating system,
which presents a problem for programs that must work consistently on different
operating systems. Eclipse solves this problem by providing a level of abstraction
above the native filesystem. That is, it doesn’t use a hierarchy of directories and

16 CHAPTER 2
Eclipse Workbench

subdirectories, each of which contains files; instead, Eclipse uses projects at the
highest level, and it uses folders under the projects.

 Projects, by default, correspond to subdirectories in the workspace directory,
and folders correspond to subdirectories of the project folder; but in general,
when you’re working within Eclipse, you won’t be aware of the filesystem. Unless
you perform an operation such as importing a file from the filesystem, you won’t
be exposed to a traditional file open dialog box, for example. Everything in an
Eclipse project exists within a self-contained, platform-neutral hierarchy.

2.2.2 The Eclipse Workbench

Eclipse is made up of components, and the fundamental component is the Eclipse
Workbench. This is the main window that appears when you start Eclipse. The
Workbench has one simple job to do: to allow you to work with projects. It doesn’t
know anything about editing, running, or debugging Java programs; it only
knows how to navigate projects and resources (such as files and folders). Any tasks
it can’t handle, it delegates to other components, such as the Java Development
Tools (JDT).

Perspectives, views, and editors
The Eclipse Workbench is a single application window that at any given time
contains a number of different types of panes called views plus one special pane,
the editor. In some cases, a single pane may contain a group of views in a tabbed
notebook. Depending on the perspective, one pane might contain a console win-
dow while another might contain an outline of the currently selected project.
The primary component of every perspective, however, is the editor.

 Just as there are different types of documents, there are different types of edi-
tors. When you select (or create) a document in Eclipse, Eclipse does its best to
open the document using the most appropriate editor. If it’s a simple text docu-
ment, the document will be opened using Eclipse’s built-in text editor. If it’s a Java
source file, it will be opened using the JDT’s Java editor, which has special features
such as the ability to check syntax as code is typed. If it’s a Microsoft Word docu-
ment on a Windows computer and Word is installed, the document will be opened
using Word inside Eclipse, by means of object linking and embedding (OLE).

 You don’t directly choose each of the different views in the Workbench or how
they are arranged. Instead, Eclipse provides several preselected sets of views
arranged in a predetermined way; they are called perspectives, and they can be
customized to suit your needs.

Eclipse overview 17

 Every perspective is designed to perform a specific task, such as writing or
debugging a Java program, and each of the views in the perspective is chosen to
allow you to deal with different aspects of that task. For example, in a perspective
for debugging, one view might show the source code, another might show the
current values of the program’s variables, and yet another might show the pro-
gram’s output.

 The first time you start Eclipse, it will be in the Resource perspective (see fig-
ure 2.1). You might think of this as the home perspective. It is a general-purpose
perspective useful for creating, viewing, and managing all types of resources—
whether a resource is a Java project or a set of word-processing documents doesn’t
matter in this perspective, apart from which editor is used to open specific docu-
ments in the editor area.

 The panel at upper left is called the Navigator view; it shows a hierarchical
representation of your workspace and all the projects in it. At first this view will

Figure 2.1 The initial view of Eclipse is the Resource perspective—a general-purpose perspective
for creating, viewing, and managing all types of resources.

18 CHAPTER 2
Eclipse Workbench

be empty, of course; but, as you’ll see, it is the starting point for creating projects
and working with Eclipse.

 Within the Workbench, as you work, you can choose among the different per-
spectives by selecting Window→Open Perspective. Eclipse will also change the
perspective automatically, when appropriate—such as changing from the Java
perspective to the Debug perspective when you choose to debug a program from
the Eclipse menu.

Menus and toolbars
In addition to perspective, views, and editors, several other features of the Work-
bench user interface (UI) are worth mentioning: the main menu, the main toolbar,
and the shortcut toolbar. Like the views and editors in a perspective, the Work-
bench’s menu and toolbar can change depending on the tasks and features avail-
able in the current perspective.

 The Eclipse main menu appears at the top of the Workbench window, below
the title bar (unless you are using a Macintosh, in which case the menu appears,
Mac style, at the top of the screen). You can invoke most actions in Eclipse from
the main menu or its submenus. For example, if the document HelloWorld.java
is currently being edited, you can save it by selecting File→Save HelloWorld.java
from the main menu.

 Below the main menu is a toolbar called the main toolbar, which contains but-
tons that provide convenient shortcuts for commonly performed actions. One,
for example, is an icon representing a floppy disk, which saves the contents of
the document that is currently being edited (like the File→Save menu selection).
These tool buttons don’t display labels to indicate what they do unless you posi-
tion the mouse pointer over them; doing so causes a short text description to
display as a hovering tool tip.

 Along the left side of the screen is another toolbar called the shortcut toolbar.
The buttons here provide a quick way to open a new perspective and switch
between perspectives. The top button, Open a Perspective, is an alternative to
the Window→Open Perspective selection in the main menu. Below it is a short-
cut to the Resource perspective. As you open new perspectives, shortcuts to those
perspectives appear here, as well.

 You can optionally add another type of shortcut to the shortcut toolbar: a Fast
View button. Fast Views provide a way to turn a view in a perspective into an icon—
similar to the way you can minimize a window in many applications. For exam-
ple, you may find that in the Resource perspective, you need to look at the Out-
line view only occasionally. To turn the Outline view into a Fast View icon, click

Eclipse overview 19

on the Outline icon in the view’s title bar and select Fast View from the menu that
appears. The Outline view is closed, and its icon appears in the shortcut toolbar.
Clicking on the icon alternately opens and closes the view. To restore the view in
its previous place in the perspective, right-click on the Fast View icon and select
Fast View.

 In addition to the Workbench menu and toolbars, views can also have
menus. Every view has a menu you can select by clicking on its icon. This menu
lets you perform actions on the view’s window, such as maximizing it or closing
it. Generally this menu is not used for any other purpose. Views can also have a
view-specific menu, which is represented in the view’s title bar by a black trian-
gle. In the Resource perspective, the Navigator view has a menu that lets you set
sorting and filtering options.

 Some views also have a toolbar. In the Resource perspective, the Outline view
has tool buttons that let you toggle various display options on or off.

Changing perspectives
As you work in the Eclipse Workbench, you’ll occasionally find that the different
views aren’t quite the right size for the work you’re doing—perhaps your source
code is too wide for the editor area. The solution is to click on the left or right
window border and drag it so the window is the right size.

 Sometimes you may want to supersize a view temporarily by double-clicking on
the title bar; this will maximize it within the Eclipse Workbench. Double-clicking
on the title bar again will reduce it back to its regular size.

 You can also move views around by dragging them using their title bars. Drag-
ging one view on top of another will cause them to appear as a single tabbed note-
book of views. Selecting a view in a notebook is like selecting a document in the
editor pane: Click its tab at the top or bottom of the notebook. Dragging a view
below, above, or beside another view will cause the views to dock—the space occu-
pied by the stationary view will be redistributed between the stationary view and
the view you are dragging into place. As you drag the window you want to move,
the mouse pointer will become a black arrow whenever it is over a window bound-
ary, indicating that docking is allowed. For example, if you want to make the edi-
tor area taller in the Resource perspective, drag the Task view below the Outline
view so the Navigator, Outline, and Task views share a single column on the left
side of the screen.

 In addition to moving views around, you can remove a view from a perspective
by selecting Close from the view’s title bar menu. You can also add a new view to
a perspective by selecting Window→Show View from the main Eclipse menu.

20 CHAPTER 2
Eclipse Workbench

 Eclipse will save the changes you make to perspectives as you move from per-
spective to perspective or close and open Eclipse. To restore the perspective to
its default appearance, select Window→Reset Perspective.

 If you find that your customized perspective is particularly useful, you can
add it to Eclipse’s repertoire of perspectives. From the Eclipse menu, select
Window→Save Perspective As; you will be prompted to provide a name for your
new perspective.

2.3 The Java quick tour

Eclipse is installed, and you understand how the different views in perspectives
work together to allow you to perform a task. Let’s take Eclipse out for a spin by
writing, running, and debugging a traditional “Hello, world” program.

2.3.1 Creating a Java project

Before you can do anything else in Eclipse, such as creating a Java program, you
need to create a project. Eclipse has the potential to support many kinds of
projects using plug-ins (such as EJB or C/C++), but it supports these three types
of projects as standard:

■ Plug-in Development—Provides an environment for creating your own plug-
ins for Eclipse. This approach is great if you want to extend Eclipse to do
new and wonderful things—but we’ll get to that later. For now, you’ll use
Eclipse just the way it is.

■ Simple—Provides a generic environment, which you might use for docu-
mentation.

■ Java—Obviously, the choice for developing a Java program. Choosing this
type of project sets up an environment with various Java-specific settings,
including a classpath, source directories, and output directories.

To create a new Java project, follow these steps:

1 Right-click in the Navigator view to bring up a context menu and select
New→Project.

2 In the New Project dialog box, Eclipse presents the project options: Java,
Plug-in Development, and Simple. Because you want to create a Java
program, select Java on the left side of the dialog box.

3 Select Java Project on the right. If you’ve installed other types of Java devel-
opment plug-ins, various other types of Java projects may potentially be

The Java quick tour 21

listed here (EJBs and servlets, for example). But the JDT that comes stan-
dard with Eclipse only offers support for standard Java applications, so
you must choose the Java Project option.

4 Click Next to start the New Java Project Wizard. (A wizard is a set of dialog
boxes that prompts you through a set of well-defined, sequential steps nec-
essary to perform a specific task. This feature is used extensively through-
out Eclipse.)

5 The first dialog box prompts you for a project name. This is a simple
“Hello, world” example, so enter Hello. Clicking Next would take you to
a dialog box that lets you change a number of Java build settings, but for
this example you don’t need to change anything.

6 Click Finish.
7 Eclipse notifies you that this kind of project is associated with the Java

perspective and asks whether you want to switch to the Java perspective.
Check the Don’t Show Me This Message Again box and click Yes.

The perspective changes to a Java perspective (see figure 2.2). Notice that the
view in the upper-left corner is no longer the Navigator view; it is now the Pack-
age Explorer view, and it displays the new Hello project. The Package Explorer
is similar to the Navigator, but it’s better suited for Java projects; for one thing, it
understands Java packages and displays them as a single entry, rather than as a
nested set of directories. Notice also that a new icon has appeared on the left
edge of the Workbench: a shortcut for the Java perspective.

 At the bottom of the window is a Tasks view. It is useful for keeping track of
what needs to be done in a project. Tasks are added to this list automatically as
Eclipse encounters errors in your code. You can also add tasks to the Task view
by right-clicking in the Tasks view and selecting New Task from the context
menu; this is a convenient way to keep a to-do list for your project.

 Finally, notice the Outline view on the right side of the screen. The content of
this view depends on the type of document selected in the editor. If it’s a Java
class, you can use the outline to browse class attributes and methods and move
easily between them. Depending on whether the Show Source of Selected Ele-
ment button in the main toolbar is toggled on or off, you can view your source as
part of a file (what is sometimes referred to as a compilation unit) or as distinct
Java elements, such as methods and attributes.

22 CHAPTER 2
Eclipse Workbench

2.3.2 Creating a Java class

Once you’ve created a project for it to live in, you can create your first Java pro-
gram. Although doing so is not necessary, it’s a good practice to organize your
Java classes into packages. We’ll put all packages in this book in the hierarchy
starting with the Java-style version of the domain name associated with this
book, org.eclipseguide (which of course is the reverse of the Internet style).
Using domain names reduces the likelihood of name collisions—that is, more
than one class with exactly the same name. You can use a registered domain
name if you have one, but if not, you can use any convenient, unique, ad hoc
name, especially for private use. Finally, add a name for this particular project:
hello. All together, the package name is org.eclipseguide.hello.

Figure 2.2 The Java perspective includes the Package Explorer view. This perspective is better
suited for Java projects because it displays Java packages as a single entry instead of a nested set
of directories.

The Java quick tour 23

 Follow these steps to create your Java program:
1 Right-click on the project and select New→Class to bring up the New

Java Class Wizard.
2 The first field, Source Folder, is by default the project’s folder—leave this

as it is.
3 Enter org.eclipseguide.hello in the Package field.
4 In the class name field, enter HelloWorld.
5 In the section Which Method Stubs Would You Like to Create?, check the

box for public static void main(String[] args). The completed New
Java Class dialog box is shown in figure 2.3.

6 Click Finish, and the New Java Class Wizard will create the appropriate
directory structure for the package (represented in the Navigator by the
entry org.eclipseguide.hello under the Hello project) and the source
file HelloWorld.java under this package name.

Figure 2.3
Creating the
HelloWorld class
using the New Java
Class Wizard

24 CHAPTER 2
Eclipse Workbench

If you examine the workspace directory in the native filesystem, you will find that
there is not a single directory named org.eclipseguide.hello, but rather the series
of directories that Java expects. If you’ve installed Eclipse in C:\Eclipse, the full
path to your new source file will be C:\Eclipse\workspace\org\eclipseguide\hello\
HelloWorld.java. Normally, though, you only need to deal with the visual repre-
sentation that Eclipse provides in the Package Explorer view.

 In the editor area in the middle of the screen, you see the Java code gener-
ated by the wizard. Also notice that tabs now appear at the top of the editor area,
which allow you to select between the Welcome screen that first appeared and
this new HelloWorld.java file. (You don’t need the Welcome screen anymore, so
you can click on the Welcome tab and click the X in the tab to make it go away.)
You may also want to adjust the size of your windows and views to get a more
complete view of the source code and the other views.

 The code that’s automatically generated is just a stub—the class with an
empty method. You need to add any functionality, such as printing your “Hello,
world!”. To do this, alter the code generated by Eclipse by adding a line to
main() as follows:

/*
 * Created on Feb 14, 2003
 *
 * To change this generated comment go to
 * Window>Preferences>Java>Code Generation>Code and Comments
 */
package org.eclipseguide.hello;

/**
 * @author david
 */
public class HelloWorld {

 public static void main(String[] args) {
 System.out.println("Hello, world!");
 }
}

Code completion features
Notice that as you type the opening parenthesis, Eclipse helpfully inserts its part-
ner, the closing parenthesis, immediately after the cursor. The same thing hap-
pens when you type the double quote to begin entering “Hello, world!”. This is
one of Eclipse’s code-completion features. You can turn off this feature if you
find it as meddlesome as a backseat driver, but like many of Eclipse’s other fea-
tures, if you live with it, you may learn to love it.

The Java quick tour 25

Depending on how quickly you type, you may see another code-completion fea-
ture called code assist as you type System.out.println. If you pause after typing a
class name and a period, Eclipse presents you with a list of proposals—the meth-
ods and attributes available for the class, together with their Javadoc comments.
You can find the one you want by either scrolling through the list or typing the
first letter (or more) to narrow the choice; pressing Enter completes the code
(see figure 2.4). This is most useful when you can’t remember the exact name of
the method you’re looking for or need to be reminded what parameters it takes;
otherwise you’ll find that it’s usually faster to ignore the proposal and continue
typing the method name yourself.

 You can also invoke code completion manually at any time by pressing Ctrl-
Space. The exact effect will depend on the context, and you may wish to experi-
ment a bit with this feature to become familiar with it. It can be useful, for exam-
ple, after typing the first few letters of a particularly long class name.

 Eclipse’s code-generation feature is powerful and surprisingly easy to custom-
ize, because it is implemented using simple templates. You’ll see it in greater
depth when we examine Eclipse’s settings and preferences.

2.3.3 Running the Java program

You’re now ready to run this program. There are several things you might want
to consider when running a Java program, including the Java runtime it should

Figure 2.4 The Eclipse code assist feature displays a list of proposed methods and their Javadoc
comments. Scroll or type the first letter (or more) to narrow the choice, and then press Enter to
complete the code.

26 CHAPTER 2
Eclipse Workbench

use, whether it will take any command-line parameters, and, if more than one
class has a main() method, which one to use. The standard way to start a Java
program in Eclipse is to select Run→Run from the Eclipse menu. Doing so
brings up a dialog box that lets you configure the launch options for the pro-
gram; before running a program, you need to create a launch configuration or
select an existing launch configuration.

 For most simple programs, you don’t need a special launch configuration, so
you can use a much easier method to start the program: First make sure the Hello-
World source is selected in the editor (its tab is highlighted in blue) and then do
the following from the Eclipse menu:

1 Select Run→Run As→Java Application.
2 Because you’ve made changes to the program, Eclipse prompts you to

save your changes before it runs the program. Click OK.
3 The Task view changes to a Console view and displays your program out-

put (see figure 2.5).

You may wonder why no separate step is required to compile the .java file into a
.class file. This is the case because the Eclipse JDT includes a special incremental
compiler and evaluates your source code as you type it. Thus it can highlight
things such as syntax errors and unresolved references as you type. (Like
Eclipse’s other friendly features, this functionality can be turned off if you find it
annoying.) If compilation is successful, the compiled .class file is saved at the
same time your source file is saved.

Figure 2.5
The Eclipse Console
view displays the
output from the
HelloWorld program.

The Java quick tour 27

2.3.4 Debugging the Java program

If writing, compiling, and running a Java program were all Eclipse had to offer,
it probably wouldn’t seem worth the bother of setting up a project and using per-
spectives, with their shifting views, to get around; using a simple text editor and
compiling at the command line is at least as attractive. As you learn how to use
Eclipse more effectively, it will become increasingly obvious that Eclipse does have
much more to offer, largely because it interprets the code in a more comprehen-
sive way than a simple editor can—even an editor that can check syntax.

 Eclipse’s ability to run the code interactively is one major benefit. Using the
JDT debugger, you can execute your Java program line by line and examine the
value of variables at different points in the program, for example. This process
can be invaluable in locating problems in your code.

 Before starting the debugger, you need to add a bit more code to the Hello-
World program to make it more interesting. Add a say() method and change the
code in the main() method to call say() instead of calling System.out.
println() directly, as shown here:

public class HelloWorld {

 public static void main(String[] args) {
 say("Hello, world!");
 }
 public static void say(String msg) {
 for (int i = 0; i < 3; i++) {
 System.out.println(msg);
 }
 }
}

To prepare for debugging, you also need to set a breakpoint in your code so the
debugger suspends execution and allows you to debug—otherwise, the program
will run to completion without letting you do any debugging. To set a breakpoint,
double-click in the gray margin on the left side of the editor, next to the call to
say(). A blue dot will appear, indicating an active breakpoint.

 Starting the program under the debugger is similar to running it. Eclipse
provides two options: Use the full-service Run→Debug menu selection to use a
launch configuration, or use the express Run→Debug As→Java Application selec-
tion if the default options are OK. Here, as before, you can use the latter.

 Make sure the source for HelloWorld is selected in the editor and select Run→
Debug As→Java Application from the main menu. Eclipse will start the program,
change to the Debug perspective, and suspend execution at the breakpoint (see
figure 2.6).

28 CHAPTER 2
Eclipse Workbench

The Debug perspective includes several new views that are, not surprisingly, espe-
cially useful for debugging. First, at top left, is the Debug view (not to be confused
with the Debug perspective to which it belongs), which shows the call stack and
status of all current threads, including any threads that have already run to com-
pletion. Your program, which Eclipse started, has hit a breakpoint, and its status
is shown as Suspended.

Stepping through code
In the title bar of the Debug view is a toolbar that lets you control the program’s
execution. The first few tool buttons, which resemble the familiar controls of
electronic devices such as CD players, allow you to resume, suspend, or terminate
the program. Several buttons incorporate arrows in their design; these allow you
to step through a program a line at a time. Holding the mouse over each button
in turn will cause tool tips to appear, identifying them as Step With Filters, Step

Figure 2.6 Debugging HelloWorld: Execution is suspended at the first breakpoint.

The Java quick tour 29

Into, Step Over, and Step Return. (There are several other buttons that we’ll
ignore for now; we’ll look at them in chapter 3, “The Java Development Cycle:
Test, Code, Repeat,” when we examine debugging in greater detail.)

 For example, click the second step button, Step Into. Doing so executes the
line of code that is currently highlighted in the editor area below the Debug view:
the call to the say() method. Step Into, as the name suggests, takes you into the
method that is called: After clicking Step Into, the highlighted line is the first
executable line in say()—the for statement.

 The Step With Filters button works the same as Step Into, but it’s selective
about what methods it will step into. You normally want to step only into methods
in your own classes and not into the standard Java packages or third-party pack-
ages. You can specify which methods Step Filter will execute and return from
immediately by selecting Window→Preferences→Java→Debug→Step Filtering and
defining step filters by checking the packages and classes listed there. Taking a
moment to set these filters is well worth the trouble, because Step With Filters
saves you from getting lost deep in unknown code—something that can happen
all too often when you use Step Into.

Evaluating variables and expressions
To the right of the Debug view is a tabbed notebook containing views that let you
examine and modify variables and breakpoints. Select the Variables tab (if it isn’t
already selected). This view shows the variables in the current scope and their
values; before entering the for loop, this view includes only the say() method’s
msg parameter and its value, “Hello, world!”. Click either Step Over or Step Into
to enter the for loop. (Both have the same effect here, because you don’t call any
methods in this line of code.) The Variables view will display the loop index i
and its current value, 0.

 Sometimes a program has many variables, but you’re interested in only one or
a few. To watch select variables or expressions, you can add them to the watch list
in the Expression view. To do this, select a variable—i, for instance—by double-
clicking on it in the editor, and then right-click on the selection and choose Watch
from the context menu. The variable (and its value, if it’s in scope) will appear in
the Expressions view.

 One significant advantage of watching variables in the Variables and Expres-
sions views over using print statements for debugging is that you can inspect
objects and their fields in detail and change their values—even normally immu-
table strings. Return to the Variables view and expand the msg variable to show its
attributes. One of these is a char array, value, which can be expanded to reveal

30 CHAPTER 2
Eclipse Workbench

the individual characters in the msg String. For example, double-click on the
character H, and you will be prompted to enter a new value, such as J.

 The Display view is in the same tabbed notebook. It allows you to enter any
variables that are in scope, or arbitrary expressions including these variables.
Select Display view and enter the following, for example:

msg.charAt(i)

To immediately evaluate this expression, you must first select it and then click
the second Display view tool button (Display Result of Evaluating Selected Text),
which displays the results in the Display view. It’s usually better to click the first
tool button (Inspect Result of Evaluating Selected Text), because it adds the expres-
sion to the Expressions view. Either way, the value displayed is not automatically
updated as the variables in the expression change; but in the Expressions view,
you have the option of converting the expression into a watch expression, which is
updated as you step through the code. To do this, change to the Expressions view.
Notice that the Inspect icon (a magnifying glass) appears next to the expression.
Click on the expression and select Convert to Watch Expression from the context
menu. The icon next to the expression will change to the Watch icon.

 Let’s go back to stepping through the code. You previously left the cursor at
the call to System.out.println(). If you want to see the code for System.out.
println(), you can click Step Into; otherwise click Step Over to execute the Sys-
tem.out.println() method and start the next iteration of the for loop.

 Below the editor area is another tabbed notebook, which includes a Console
view. Program output appears here; if you made the earlier change to the variable
msg, the line “Jello, world!” will appear. You can either continue to click Step Over
until the loop terminates or, if you find this process tedious, click Step Return to
immediately finish executing the say() method and return to the main() method.
Or, just click the Resume button to let the program run to the end.

2.3.5 Java scrapbook pages

When you’re writing a program, you sometimes have an idea that you’re not sure
will work and that you want to try before going through the trouble of changing
your code. Eclipse provides a simple but slick alternative to starting a new
project (or writing a small program using a simple editor for execution at a com-
mand prompt): Java scrapbook pages. By virtue of its incremental compiler, you
can enter arbitrary Java code into a scrapbook page and execute it—it doesn’t
need to be in a class or a method.

Preferences and other settings 31

 To create a Java scrapbook page, change to the Java perspective, right-click
on the HelloWorld project, and select New→Scrapbook Page from the context
menu. When you’re prompted for a filename, enter Test. Enter some Java code,
such as the following example:

for(int i = 1; i < 10; i++)
{
 HelloWorld.say(Integer.toString(i));
}

To execute this code, you first need to import the org.eclipseguide.hello pack-
age, as follows:

1 Right-click inside the editor pane and select Set Imports from the con-
text menu.

2 In the Java Snippet Imports dialog box that appears, select Add Packages.
3 In the next dialog box, type org.eclipseguide.hello in the Select the Pack-

ages to Add as Imports field. (You don’t have to type the complete
name—after you’ve typed one or more letters you can choose it from the
list that Eclipse presents.)

4 Click OK.

Now you can execute the previous code snippet:

1 Highlight the code by clicking and dragging with the mouse.
2 Right-click on the selected code and select Execute from the context menu.
3 As with a regular Java program, the output from this code snippet appears

in the console view below the editor.

This code doesn’t require any additional imports; but if you used StringToken-
izer, for example, you could import the appropriate package (java.util.*) as
described. In such a case, however, it’s easier to import the specific type by select-
ing Add Types in the Java Snippet Imports dialog box and typing in StringToken-
izer. Eclipse will find the appropriate package and generate the fully qualified
type name for you.

2.4 Preferences and other settings

So far, you’ve been using Eclipse with all its default settings. You can change
many things to suit your taste, your working style, or your organization’s coding
conventions, by selecting Window→Preferences. Using the dialog that appears,

32 CHAPTER 2
Eclipse Workbench

you can change (among numerous other settings) the fonts displayed, whether
tabs appear at the top or bottom of views, and the code formatting style; you can
also add classpath entries and new templates for generating code or comments.
In this section, we’ll look at a few of the settings you might want to change.

2.4.1 Javadoc comments
First, let’s edit the text that appears when you create a new class. You’ll remove
the placeholder text, To change this generated comment…, and expand the Javadoc
comments a bit. You’ll also provide a reminder that you need to type in a class
summary and a description. Follow these steps:

1 Select Window→Preferences→Java→Code Generation.
2 Click the Code and Comments tab on this page.
3 Select Code→New Java files, and click the Edit button.
4 Change the text to the following:

/* ${file_name}
 * Created on ${date}
 */
${package_declaration}

${typecomment}
${type_declaration}

5 Click OK in the Edit Template dialog box.

In addition to changing the template used whenever a new Java file is created,
you need to change one of the templates it includes: the typecomment template.
This is found on the same page, Code and Comments, under Comments:

1 Select Comment→Types and click the Edit button.
2 Change the text to the following:

/**
 * Add one sentence class summary here.
 * Add class description here.
 *
 * @author ${user}
 * @version 1.0, ${date}
 */

Notice that when you edit the template text, you don’t need to type ${date}—
you can select it from the list of available variables by clicking the Insert Variable
button. Appropriate values for the two variables in this template (${user} and
${date}) will be inserted when the code is generated.

Preferences and other settings 33

 To see your changes, create a new class called Test in the org.eclipseguide.
hello package. Note how all the variables have been filled out.

2.4.2 Format style

Two general styles are used to format Java code. The most common places an
opening brace at the end of the statement that requires it and the closing brace
in the same column as the statement, like this:

for(i = 0; i < 100; i++) {
 // do something
}

This is the default style that Eclipse uses when you right-click on your source code
and select Format from the context menu.

 The other style places the opening and closing braces in the same column as
the statement. For example:

for(i = 0; i < 100; i++)
{
 // do something
}

To change to this style, do the following:

1 Select Java→Code Formatter in the Preferences dialog.
2 In the Options area, select the first tab, New Lines.
3 Check the first selection, Insert a New Line Before an Opening Brace.

When you click to enable this option, the sample code shown in the win-
dow below the options is updated to reflect your selection. You may want
to experiment with some of the other options to see their effects.

One of this book’s authors prefers to enable Insert New Lines in Control State-
ments and Insert a New Line in an Empty Block, because he finds that doing so
makes the structure of the code more obvious. But the important point (beyond
one author’s personal preference) is that the Eclipse Java editor makes it easy to
change styles and reformat your code. If you are working as part of a team with
established conventions and your personal preference doesn’t conform, this fea-
ture lets you work in the style of your choice and reformat according to the cod-
ing convention before checking in your code.

2.4.3 Code generation templates

You saw earlier that when editing source code in the Java editor, pressing Ctrl-
Space invokes Eclipse’s code-generation feature. Depending on the context, this

34 CHAPTER 2
Eclipse Workbench

key combination causes a template to be evaluated and inserted into the source
code at that point.

 You’ve already seen one example of a template: the code-generation template
the New Class Wizard uses to add comments when it creates a new class file. In
addition to this and the other code- and comment-generation templates, another
set of templates is used to create boilerplate code such as flow control constructs;
these templates are found in preferences under Java→Editor→Templates.

 Let’s create a template to simplify typing System.out.println():

1 Select Windows→Preferences→Java→Editor→Templates.
2 Click the New button.
3 In the New Template dialog that appears, enter sop as the name, ensure

that the context is Java, and enter Shortcut for System.out.println() as
the description.

4 Enter the following pattern for the template:

System.out.println("${cursor}");

5 Click OK in the New Template dialog box (see figure 2.7).
6 Click OK in the Preference dialog to return to the Workbench.

The ${cursor} variable here indicates where the cursor will be placed after the
template is evaluated and inserted into the text.

 To use the new template in the Java editor, type sop and press Ctrl-Space (or
type s, press Ctrl-Space, select sop from the list that appears, and press Enter).

Figure 2.7 Creating a shortcut for System.out.println() using a Java editor template

Preferences and other settings 35

The letters sop are replaced with the System.out.println() method call, and the
cursor is replaced between the quotation marks, ready for you to type the text to
be printed.

 Let’s create one more template to produce a for loop. There are already three
for loop templates; but the template you’ll create is simpler than the existing
ones, which are designed to iterate over an array or collection:

1 Select Windows→Preferences→Java→Editor→Templates.
2 Click the New button.
3 Enter for as the name, Simple for loop as the description, and the fol-

lowing pattern:
for(int ${index}=0; ${index}< ${cursor}; ${index}++})
{
}

4 Click OK in the New Template dialog box.
5 Click OK in the Preference dialog to return to the Workbench.

Notice that this example uses a new variable, ${index}, which proposes a new
index to the user. By default, this index is initially i; but the cursor is placed on
this index, and anything you type (such as j or foo) replaces the ${index} vari-
able everywhere in the template.

 Try this new template by typing for and pressing Ctrl-Space. From the list
that appears, select the entry Simple For Loop. Type a new name for the index
variable, such as loopvar, and notice that it automatically appears in the test and
increment clauses. You might also notice that the index variable has a green under-
line, indicating a link; pressing Tab will advance the cursor to the next link. In
this case, pressing Tab takes you to the ${cursor} variable. At this point, you can
type a constant, variable, or other expression, as appropriate.

2.4.4 Classpaths and classpath variables

There are several ways you can add a directory or a JAR file to a project’s class-
path: when you create the class using the New Class Wizard, by editing your
project options, or by creating a launch configuration for your project. In each
case, you can either enter the path to the JAR file or directory you wish to add, or
you can use a classpath variable. If you are only adding a JAR file for testing pur-
poses, or if the JAR file is one you’ll use only in this project, it’s easiest to add the
path and filename explicitly. But if it’s something you are likely to use in many of
your projects (for example, a JDBC driver), you may wish to create a classpath

36 CHAPTER 2
Eclipse Workbench

variable. Besides being easier to type, a classpath variable provides a single loca-
tion to specify the JAR files used by your projects. This makes it easier to manage
your JAR files. When you want to upgrade to a new version of a JAR, a single
change will update all your projects.

 Suppose you will be using the MySQL database and that the full path and file-
name of your JDBC driver is c:\mysql\jdbc\lib\mm.mysql-2.0.14-bin.jar. To create
a classpath variable for this JAR file, open the Window→Preferences dialog and
select Java→Classpath Variables. Click New and enter MYSQL_JDBC as the
name; either browse for the JAR file by clicking the File button or type the path
and filename manually. Click OK twice to save and return to the Workbench.

 Now, when you need to add the MySQL JDBC JAR to a project, you don’t have
to search your hard drive for it; MYSQL_JDBC is one of the available classpath vari-
ables you can select. To add it to your Hello project, for example, right-click on
the project name and select Properties from the context menu. Select Java Build
Path on the left side of the dialog box that appears and then select the Libraries
tab on the right. You could add the JAR explicitly by selecting Add External Jars,
but instead select Add Variable, click MYSQL_JDBC (see figure 2.8), and click OK.

2.4.5 Exporting and importing preferences

Eclipse’s preferences and settings are numerous, and you can spend a lot of time
customizing it to your taste and needs. Fortunately, there is a way to save these
settings so you can apply them to another Eclipse installation or share them with

Figure 2.8
Creating a new classpath variable.
Classpath variables make it easier
to manage your classpath and
provide flexibility as well.

Summary 37

your friends, or, more importantly, so you have a backup in case the file they are
stored in (the Eclipse metadata file) gets corrupted.

 The Windows→Preferences box has two buttons at the bottom: Import and
Export. To save your preferences, click the Export button, type in a filename, and
click Save to create an Eclipse preference file. To restore preferences from a pref-
erence file, click the Import button, locate the file, and click Open.

2.5 Summary

Many different versions of Eclipse are available—you aren’t limited to using only
a stable, officially released version. This is one of the most interesting features of
open source software. Deciding which one to use requires balancing stability with
features. If you need a rock-solid product, you may wish to stick to a release ver-
sion. If you are a little more daring or you absolutely require a specific new feature,
you may wish to try the latest stable release. If you’re just curious to see what’s
new, you can try an integration build. In this book, we’re using the official 2.1
release, but most of the material will remain largely applicable to future releases.

 The first key to using Eclipse effectively is understanding its organizational
concepts of perspectives, views, and editors. The Eclipse Workbench—the win-
dow that appears on your screen when you start Eclipse—contains a number of
different panes called views. The different views that appear at one time on the
Workbench are especially selected to enable you to accomplish a specific task, such
as working with Java source files. The title bar of each view has a window menu
and, optionally, a view-specific menu, a toolbar, or both.

 In addition to views, most perspectives have an editor as their central compo-
nent. The specific editor that appears at any given time depends on the resource
being edited. A Java source file, for example, will be opened automatically using
the JDT Java editor. The Workbench also has a number of other UI elements
beside views and an editor: a main menu bar at the top, a main toolbar below that,
and a shortcut toolbar along the left side. Because a perspective is a collection of
these views, menus, toolbars, and their relative positions, all of these elements
can change as the perspective changes. The best way to learn how to use these
features is to perform basic tasks, beginning with creating a Java project. (Eclipse
is not limited to creating Java projects, but the Java Development Toolkit that is
included is powerful, easy to use, and the most popular reason for using Eclipse.)
Writing a program, running it, and debugging it provides a good introduction to
Eclipse’s features.

38 CHAPTER 2
Eclipse Workbench

 Eclipse is also highly customizable. You can modify many settings and prefer-
ences using the Windows→Preferences selection from the main menu. Prefer-
ences can be saved and restored using the Windows→Preferences Import and
Export buttons; if you spend a lot of time customizing Eclipse, it’s a good idea to
export your changes to an Eclipse preference file for backup.

39

3The Java development cycle:
 test, code, repeat

In this chapter…
■ A brief introduction to agile development and

test-driven development
■ The JUnit unit testing framework
■ Further debugging techniques
■ The log4j logging framework

40 CHAPTER 3
The Java development cycle

Eclipse’s JDT provides a powerful, flexible environment for writing, running,
and debugging Java code, but developing quality software requires more than
that. Depending on the type of software you are developing and the size of your
project, you may find that you need additional tools, either to support your
development process or to add functionality to your product. Because of its open
and extensible nature, Eclipse easily accommodates tools of all sorts. In this
chapter, we’ll examine two such tools: Eclipse’s integral testing framework,
JUnit; and a logging framework, log4j. In Chapter 8 you’ll learn how to develop
a log4j plug-in that integrates with Eclipse, but here we will use log4j simply as
an external package.

3.1 Java development tools methodology

Although this book is primarily about a software development tool and not about
software development methodology per se, the two topics are unavoidably
related. Eclipse provides tools that are well suited for certain styles of program-
ming. This doesn’t mean you must program in a certain style when you use
Eclipse, or that Eclipse is inappropriate for other styles of programming. It just
means that if you program in the style used by the people who develop Eclipse,
you’ll find that many of your needs have been anticipated.

 Currently, the most fashionable programming style is XP: eXtreme Program-
ming. One of the most unique and controversial approaches advocated by XP’s
proponents is pair programming: At all times, two developers sit at a single termi-
nal while writing code. Largely because of this requirement, more developers are
probably talking about XP than doing it. Apart from this aspect, however, XP is
similar to a number of other methodologies, which together are often called agile
or lightweight methodologies.

 In contrast to more traditional methods (often called monumental or waterfall
methodologies), which emphasize developing a complete functional specifica-
tion of the software up front and then following a long, well-defined develop-
ment process with several distinct, waterfall-like phases, agile methodologies
emphasize an iterative process. Developers work with the customer to identify a
small, well-defined set of features, build it, and deliver it. They then repeat this
process with another set of features, and keep repeating until the job’s done.
Because the agile approach eliminates surprises late in the game and provides
quick feedback from the customer, what is built is more likely to meet the cus-
tomer’s needs. It’s also more likely to just plain work.

Java development tools methodology 41

3.1.1 Testing is job 1

All agile methods emphasize testing, but XP is the most emphatic in this regard;
it puts testing first in the development process. This approach seems backward
at first—how can you test something you haven’t built yet? But it’s not really
backward. Writing the tests sets the goals for coding, helps define how the class’s
API will work, and provides examples of how to use the class. The tests, in effect,
embody the programming requirements.

 The most extreme proponents of test-driven development go so far as to say
that the code should be developed with an eye to doing only what is necessary to
pass the tests and no more. Test-driven development forces the tests to be comprehen-
sive in order to elicit all the necessary code. Assuming the tests, in fact, test every-
thing the program does, a code that passes all tests is, by definition, 100% correct.

3.1.2 A sample application and working sets

In this chapter, you will begin developing a sample application: a lightweight
persistence component that allows you to save data in files. (As you may know,
persisting data means saving it, using some form of more-or-less permanent stor-
age, so you can retrieve it later.) This component will let you develop applica-
tions in later chapters that might otherwise require you to use a database. The
first step in building a new application or component in Eclipse is to create a
new project:

1 Select File→New→Project from the Eclipse menu.
2 Select Java→Java Project in the New Project dialog box and click Next.
3 Enter Persistence as the name for the project, and then click Finish.

Of course, you don’t want to develop a complete database—that wheel’s already
been invented too many times. You just want something that does a basic job of sav-
ing and retrieving data. We’ll design it in such a way that you can later replace it
with a real database when you want to improve performance and add functionality.

 For the moment, we’ll keep this goal of being database-compatible in mind as
we decide what this functionality should look like, but we won’t make this compat-
ibility a requirement. You could, for example, make an abstract class or an inter-
face that enforces this compatibility, but we’ll postpone that step until compatibility
becomes a clear requirement (keeping in line with the notion of doing only what
is necessary). You’ll call the class FilePersistenceServices. It has four public
methods that allow you to create a record, retrieve a record, modify an existing
record, and delete a record. The signatures for these methods are as follows:

42 CHAPTER 3
The Java development cycle

public static boolean write(String tableName, int key, Vector v);
public static Vector read(String tableName, int key);
public static boolean update(String tableName, int key, Vector v);
public static boolean delete(String tableName, int key);

The methods are defined as static, because there is no compelling reason to treat
the underlying file as an object—specifically, there is no state information that
needs to be stored between invocations. Requiring a client application to instanti-
ate FilePersistenceServices would make the client code a little more complicated
and a little less efficient. Some people feel, quite justifiably, that as a matter of
object-oriented principle, if a method can be either a static method or an instance
method, the latter should always be chosen. You may need to reconsider this
choice later, but for now, you’ll take the simplest approach and use static methods.

Defining and selecting a working set
Although it’s not a problem yet, your Eclipse environment will eventually get
cluttered as you work on more projects. One way to manage this situation is to
define working sets that let you restrict what appears in the Package Explorer to a
single project, a set of projects, or any arbitrary set of files within your projects.
To make this new Persistence project your current working set, ensure that you
are in the Java perspective and then do the following:

1 Open the Package Explorer menu by clicking the black triangle in the
view’s title bar.

2 Select Working Set.
3 The Select Working Set dialog box has no working sets defined initially,

so you have to create one by clicking the New button. You’ll be prompted
to select a working set type. Select Java and click Next.

4 In the New Working Set dialog box, enter a name such as Persistence.
5 Select the working set content from the available resources, which are

currently the two Java projects you’ve defined so far. Expand each one by
clicking the boxes with plus signs. You can select any file or folder (and
its children, if it has any) that you want to appear in this working set by
clicking the checkbox next to it. To define the Persistence project as the
current working set, check the box next to Persistence and click Finish.

6 Click OK.

You’ll notice that the Package Explorer view no longer shows the Hello project
from the previous chapter. If you want to see all the projects again later, select
Deselect Working Set from the Package Explorer menu.

The JUnit unit testing framework 43

3.2 The JUnit unit testing framework

Given the importance of testing in current development methodologies, it
should come as no surprise that a tool is available to make this job easier. JUnit is
an open-source testing framework written by Kent Beck, the principal popular-
izer of XP, and Erich Gamma, the lead developer of the Eclipse JDT. Given this
background, it should come as even less of a surprise that JUnit is included in
Eclipse as a well-integrated plug-in.

 To use JUnit in your code, the first step is to add the JUnit JAR file to your
classpath. In Chapter 2, you saw that you can do so two ways: by adding the JAR
explicitly or by defining a classpath variable and adding it to your classpath. The
latter method is preferred for adding things you plan to use often in your projects.
So, let’s create a variable for JUnit. You saw in the last chapter that you can do so
using the Window→Preferences dialog box; but to make it easier to create a vari-
able at the time you need it, you can also use the project’s Properties dialog box
(which is where you need to go, anyway, to set the project’s classpath).

 First you define the class variables using the Package Explorer as follows:

1 Right-click on the project name and select Properties from the context menu.
2 In the Properties dialog that appears, select Java Build Path in the right

pane and select the Libraries tab.
3 On this page, click the Add Variable button.
4 On the next page, click Edit. This will take you to the Classpath Variables

dialog box you saw in section 2.4.4.
5 Click New, Enter JUNIT for the variable name, and click the File button to

browse for the JUnit JAR file under the Eclipse plugins directory; this may
be, for example, c:\eclipse\plugins\org.junit_3.8.1\junit.jar. Click Open to
select the JAR from the file dialog box, and then click OK to accept the
new variable.

6 Next you’ll add a variable for the source JAR for JUnit, in case you need
it for debugging. Click New again, and this time enter JUNIT_SRC as the
name. Click File and locate the junitsrc.zip file under the JDT source direc-
tory; for example, c:\eclipse\plugins\org.eclipse.jdt.source_2.1.0\src\org.
junit_3.8.1\junitsrc.zip. Click Open and then click OK to return to the
Classpath Variables dialog.

7 Click OK to return to the New Variable Classpath Entry box.

44 CHAPTER 3
The Java development cycle

Now you’ll add the JUNIT variable to your classpath and associate the source JAR
with it, using the JUNIT_SRC variable:

1 Click on the JUNIT classpath variable and click OK.
2 Make sure you are on the Java Build Path page in the Properties dialog

box, and click the plus sign next to the JUNIT entry. You will see that
there is no Javadoc and no source attached.

3 Double-click on Source Attachment and enter the variable name JUNIT_
SRC. Click OK and verify that the source JAR (for example, c:\eclipse\
plugins\org.junit_3.8.1\src.jar) is now attached.

4 Click OK to save the classpath changes and dismiss the Properties dialog box.

Note that a JUNIT library is now listed in the Package Explorer. If you open the
library (by clicking the plus sign), you can explore the contents of the library.

3.2.1 Method stubs and unit tests

Although you’ll write the code for your tests first, you can save a little work if you
begin by creating the class you’ll be testing (FilePersistenceServices) with method
stubs, because Eclipse has a wizard you can use to create test cases from existing
classes. This wizard is especially helpful when you’re taking an existing project
and adding unit tests for it.

 Create the FilePersistenceServices class as follows:

1 Right-click on the Persistence project in the Package Explorer view in the
Java perspective.

2 Select New→Class from the context menu and enter the package name
org.eclipseguide.persistence.

3 Enter the class name FilePersistenceServices.
4 Make sure the checkbox for generating a main() is unchecked, and click

Finish.

Add the two method stubs to the code that is generated, as shown here:

package org.eclipseguide.persistence;

/**
 * File-based persistence class
 * Provides methods for maintaining records using files
 *
 * @author david
 * @version 1.0 Dec 30, 2002
 */

The JUnit unit testing framework 45

public class FilePersistenceServices
{
 public static boolean write(String fileName, int key, Vector v)
 {
 return false;
 }

 public static Vector read(String fileName, int key)
 {
 return null;
 }
}

After you finish typing the code, you may notice several red marks on the right
side of the editor and, on the left, yellow light bulbs with a red X. These symbols
are Eclipse’s way of letting you know that your code has a problem. The red
square at the top right is a general indication, whereas the hollow red rectangles
indicate all problems in the file; if this were a longer file, where some problems
were off the screen, clicking on one would take you to that particular problem.
The indicators on the left are aligned with the text in the editor; in this instance,
both lines containing references to Vector are tagged because there is no import
statement for the Vector class. The easiest way to add it (especially if you’ve for-
gotten what package Vector is in) is to let Eclipse’s Quick Fix feature type it in
for you. To get a Quick Fix:

1 Click on one of the light bulbs.
2 Double-click on the suggested fix: Import java.util.Vector.

This class should now be error-free, with not a red mark in sight. Tidy up and
save the file:

1 Right-click in the editor area and select Source→Format from the con-
text menu.

2 Right-click in the editor area and click Save.

These last two steps aren’t really necessary, but they’re a good habit to get into
because they will help keep your files in sync with each other and make some of
Eclipse’s automated features work better.

 Finally, if you saved the code after typing it in, not only did you get the warn-
ings on either side of the editor window, but the task list also contained informa-
tion about the problems as a helpful reminder.

46 CHAPTER 3
The Java development cycle

The JUnit wizard
You’re ready to create your first unit tests. To do so, you need to create a class
that extends the JUnit TestCase class. It’s normal to have one test class for every
class in the program that you want to test, and to name them by adding Test to
the class name. So, for the FilePersistenceServices class, you will create a class
called FilePersistenceServicesTest. You could create it the normal way in
Eclipse by right-clicking in the Package Explorer, selecting New→Class from the
context menu, and setting junit.framework.TestCase as the superclass—but you
won’t do that.

 The easiest way to create test case classes is to use the JUnit wizard:

1 Right-click on the file for which you want to create test cases—FilePer-

sistenceServices—and select New→Other from the context menu.
2 Notice that in the New dialog box, you can expand the Java selection on

the left by clicking the plus sign. Doing so reveals a selection for JUnit.
3 Select JUnit on the left to present the choices TestCase and TestSuite on

the right.
4 Select TestCase (see figure 3.1). Click Next.
5 In the box that follows, accept the default values provided for the folder,

package, test case, test class, and superclass. Later, especially for larger
projects, you may consider putting tests in their own package, but keep-
ing unit tests in the same package as the code they test has the advantage
of giving them access to methods that have package access.

6 In addition to the default test entries, click the options to create method
stubs for setUp() and tearDown() (see figure 3.2). Click Next.

7 In the next dialog box, you are presented with the option to create method
stubs to test each of the methods in the FilePersistenceServices class
and its superclass Object. Check the boxes for the FilePersistenceSer-
vices read() and write() methods (see figure 3.3). (If you don’t see the
read() and write() methods, you probably didn’t save the FilePersis-
tenceServices class after adding them. Click Cancel and try again.)

8 Click Finish.

These steps create the class shown in listing 3.1 with empty method stubs
testRead() and testWrite() for testing, respectively, read() and write().

The JUnit unit testing framework 47

Figure 3.1
Creating a JUnit test case with
the New JUnit Test Case Wizard

Figure 3.2
Defining the test case and
the test class. The JUnit
wizard can also provide
method stubs for setup()
and teardown() methods.

48 CHAPTER 3
The Java development cycle

package org.eclipseguide.persistence;

import junit.framework.TestCase;

/**
 * Enter one sentence class summary here.
 * Enter class description here.
 *
 * @author david
 * @version Jan 3, 2003
 */
public class FilePersistenceServicesTest extends TestCase
{

 /**
 * Constructor for FilePersistenceServicesTest.
 * @param arg0
 */
 public FilePersistenceServicesTest(String arg0)
 {
 super(arg0);
 }

 /**

Listing 2.1 FilePersistenceServicesTest.java—the test class for FilePersistenceServices

Figure 3.3
Adding test methods. Check
the boxes for the test case
methods you want to test.

The JUnit unit testing framework 49

 * @see TestCase#setUp()
 */
 protected void setUp() throws Exception
 {
 super.setUp();
 }

 /**
 * @see TestCase#tearDown()
 */
 protected void tearDown() throws Exception
 {
 super.tearDown();
 }

 public void testWrite()
 {
 }

 public void testRead()
 {
 }
}

3.2.2 Creating test cases

Now that you have tests in place, you’re ready to add some code to the test method
stubs. First you need to add code to create a test object, a Vector, that you’ll per-
sist. The JUnit term for data and objects you create for use in a test case is fixture.
The methods setUp() and tearDown() are provided, as you might guess, to set up
or clean up fixtures as required. These are run, respectively, before and after each
test method in your test case class.

 Create the Vector as a class variable by adding the following to the beginning
of the class (remember to either add the Vector import statement yourself or use
the Quick Fix light bulb):

Vector v1;

Add code to the setUp() method to populate the Vector as follows:

protected void setUp() throws Exception
{
 super.setUp();

 v1 = new Vector();
 v1.addElement("One");
 v1.addElement("Two");
 v1.addElement("Three");
}

50 CHAPTER 3
The Java development cycle

You’re finally ready to add some tests. JUnit’s primary tools for testing are a variety
of overloaded assert methods for testing an expression or pair of expressions.
These include the following:

■ assertEquals(x, y)—Test passes if x and y are equal. x and y can be prim-
itives or any type that has an appropriate equals() method.

■ assertFalse(b)—Test passes if boolean value b is false.
■ assertTrue(b)—Test passes if boolean value b is true.
■ assertNull(o)—Test passes if object o is null.
■ assertNotNull(o)—Test passes if object o is not null.
■ assertSame(ox, oy)—Test passes if ox and oy refer to the same object.
■ assertNotSame(ox, oy)—Test passes if ox and oy do not refer to the same

object.

When you run a test case including these methods, JUnit reports the number of
assertions that failed. For now, you’ll test just the most basic functionality:
whether the read() and write() methods return reasonable values. The write()
method should return true if it succeeded in writing the values stored in the Vec-
tor you passed as an argument to a file, so you’ll use the assertTrue() method:

public void testWrite()
{
 assertTrue(FilePersistenceServices.write("TestTable", 1, v1));
}

Because you ensured that the read() method returns a Vector (because that’s its
type), it’s sufficient to test for a nonnull value with assertNotNull(). You can also
test the number and value of the individual elements returned in the Vector by
comparing them to the original Vector. With this code added, the testRead()
method looks like this:

public void testRead()
{
 Vector w = FilePersistenceServices.read("TestTable", 1);
 assertNotNull(w);
 assertEquals(w, v1);
}

Running the JUnit tests in Eclipse is similar to running a Java application. First,
make sure the test case class you want to run is selected—in this case, FilePersis-
tenceServicesTest—either in the editor pane or in the Package Explorer view.
From the Eclipse menu, select Run→Run As→JUnit Test.

The JUnit unit testing framework 51

Running JUnit tests automatically adds the JUnit view to the tabbed notebook
on the left side of the screen, covering the Package Explorer view. The JUnit
view has two sections (see figure 3.4). The most notable feature in the top section
is a red bar, which turns green once your class passes all the unit tests success-
fully. In addition, there are two tabbed pages: The Failures tab lists each test that
has failed, marked with a black X if it failed an assertion test or a red X if failed
due to a compilation or runtime error; the Hierarchy tab shows each test with
either a green checkmark if it passed or a black or red X if it failed. After viewing
the test results, you can click on the Package Explorer view’s tab at the bottom
left of the Workbench to return this view to the top.

 You can get a little instant gratification by changing the return value of the
write() method in the FilePersistenceSevices class from false to true and com-
menting out the testRead() method in the FilePersistenceServicesTest class.
(Eclipse provides an easy way to comment out a section of code: Select the code
to be commented out by clicking and dragging over it, and then either select
Source→Comment from the main menu or press Ctrl-/.) Running the JUnit tests
with these changes will give you a preview of what you can expect once your per-
sistence class is implemented and passes all its tests. Eclipse keeps track of the

Figure 3.4
The JUnit test view.
Keep an eye on the colored bar!

52 CHAPTER 3
The Java development cycle

last thing you ran, so you can run the tests by clicking the Run button (with the
running person icon) in the main toolbar. For the results, see figure 3.5.

Local history
It’s easy to make experimental changes and then back them out, because Eclipse
keeps track of your changes and lets you compare the current version of source
code with previous versions you’ve saved. The changes you made to fool the tests
in the previous section were minor, and you can probably undo them manually
using Eclipse’s Undo feature (choose Edit→Undo from the main menu or press
Ctrl-Z); but instead, let’s try Eclipse’s compare and replace feature. It’s usually
safer to return to a known working state this way, because it’s easy to introduce
errors when making changes by hand.

 To compare the current version of the file with a previous version, do the fol-
lowing:

1 Right-click on the file in the Package Explorer.
2 Select Compare With→Local History.

Figure 3.5
The JUnit test view.
Green is good to go.

The JUnit unit testing framework 53

Doing so brings up a dialog box that lets you select the previous version by date
and time and then scroll through the source to see what has changed between
the two versions. (This technique can be invaluable in finding out why code has
inexplicably broken.) When you compare the different versions of FilePersis-
tenceServices there is only one difference, of course: The return value of
write() has changed from false to true (see figure 3.6).

 You can let Eclipse change the source code to a previous version in much the
same way:

1 Right-click on the filename in the Package Explorer view.
2 Select Replace With→Local History.

Doing so brings up a dialog box nearly identical to the one in figure 3.6 that lets
you compare the current and previous versions, but this one has a Replace but-
ton you can use to revert to the previous version you select. Do the following:

1 Verify that the previous version has the original return value (false) and
click Replace.

2 Remove the comment marks from the testRead() method in FilePer-
sistenceServicesTest. You can do this by deleting the comment marks,

Figure 3.6
Comparing the current
code with a previous
version in the local history

54 CHAPTER 3
The Java development cycle

by using Undo, by highlighting the code and selecting Source→Uncom-
ment from the main menu (or pressing Ctrl-\), or by using the Replace
With→Local History feature—your choice.

You should be back where you were: two minimal tests and zero functionality. But
don’t despair—this is important, groundbreaking work. You’re off to a great start,
and things will move quickly from here.

3.2.3 How much testing is enough?

It’s often difficult to decide what to test and how detailed tests should be. So far,
you’ve written two tests that only test whether your persistence class can write a
Vector out to a file successfully and whether it can retrieve that Vector from a file
unchanged. At this level, you don’t test any details of how the class does this. These
tests may be enough—after all, you don’t need to test Java’s ability to read and
write to files.

 However, although not strictly necessary, it may help you develop functional-
ity if you test at a finer level of detail. For example, you may wish to ensure that
what is written out is correctly formatted and that what is read in is correctly
parsed. To do so, you can create a helper method that converts a Vector into a
formatted string rather than include this functionality directly in the write()
method, and you can create another method that parses a formatted string and
creates a Vector, rather than include this in the read() method. Doing so allows
you to create tests for this functionality. As mentioned previously, you don’t need
to make these methods public; because the tests are in the same package as the
code they are testing, you can give them the default package access.

 You’ll store the data in a file using comma-separated values; CSV is a common
data-exchange format. More precisely, you’ll enclose strings in quotes, separate
fields with commas, and separate records by giving each record its own line. For
example, you could represent several book records as follows:

"1","Ai","Cruelty","Houghton Mifflin","1973"
"2","Ted Hughes",”Crow","Crow","HarperCollins","1971"
"3","Gary Snyder","Turtle Island","New Directions","1974"

Note that in addition to the author, title, and other book information, you precede
each record with a unique number—a key you can use to locate a specific record.
You need to add this arbitrary bit of information because none of the other fields
are guaranteed to be unique by themselves. You’ll deal with this key automati-
cally later, but for now you’ll provide the number yourself together with the rest
of the information.

The JUnit unit testing framework 55

 In keeping with the test-first philosophy, let’s write the test first:

1 Re-use the existing fixture, the Vector v, and add the string representation
you expect to see to the test class’s attributes:
String s1 = "\"1\",\"One\",\"Two\",\"Three\"";

2 Assuming the method you’ll create will be called vector2String(), add
the following test case—a method called testVector2String()—to
FilePersistenceServicesTest:
public void testVector2String()
{
 assertEquals(s1, FilePersistenceServices.vector2String(v1, 1));
}

3 Add the method vector2String() to FilePersistenceServices (remem-
ber, you can use the simple for template you created in Chapter 2—type
for, press Ctrl-space, and select the for template from the list):
static String vector2String(Vector v, int key)
{
 String s = null;
 StringBuffer buffer = new StringBuffer();
 // start with key
 buffer.append("\"" + Integer.toString(key) + "\",");
 // add comma, quote delimited entry for each element in v
 for (int i = 0; i < v.size(); i++)
 {
 buffer.append("\"");
 buffer.append(v.elementAt(i));
 buffer.append("\"");
 if (i != (v.size() - 1))
 {
 buffer.append(",");
 }
 }
 s = buffer.toString();
 return s;
}

4 Run the tests again. The first two still fail, but the new third test passes.
To see this, click on the Hierarchy tab at the top of the JUnit view (see
figure 3.7).

Add the following test method, String2Vector(), to FilePersistenceServicesTest:
public void testString2Vector()
{
 assertEquals(FilePersistenceServices.string2Vector(s1), v1);
}

56 CHAPTER 3
The Java development cycle

The easiest way to implement string2Vector() is to use Java’s StringTokenizer
class to parse the string for you and add each token it returns to a Vector as follows:

static Vector string2Vector(String s)
{
 Vector v = new Vector();
 // use comma and double quotes as delimiters
 StringTokenizer st = new StringTokenizer(s, "\",");
 while(st.hasMoreTokens())
 {
 v.addElement(st.nextToken());
 }
 return v;
}

When you run the unit test, however, you’ll discover a slight problem with this
implementation: The test fails, because as the Failure Trace indicates, the com-
parison expected "1" but the value returned was "One". This result is due to the
fact that you added "1" as the key for the record. You need to decide: Should
string2Vector() throw this value away? Or should your test expect this result?
The answer is that at the client level, you deal with the keys independently of the
record, so the actual representation of the key is best left as an internal issue for

Figure 3.7
Not a complete success, but the
testVector2String() test method passes

The JUnit unit testing framework 57

the FilePersistenceServices class. In this method, which is concerned only with
returning data in the form of a Vector, you simply throw away the first token.
The method should instead look like this:

static Vector string2Vector(String s)
{
 Vector v = new Vector();
 // use comma and double quotes as delimiters
 StringTokenizer st = new StringTokenizer(s, "\",");
 int count = st.countTokens();
 if (count >= 2)
 {
 st.nextToken();
 for (int i = 1; i < count; i++)
 {
 v.addElement(st.nextToken());
 }
 }
 return v;
}

Run the test again, and you will see that it now passes.
 Although the key is not part of the data you want to return from the record,

you need the key to locate a particular record. To facilitate this process, let’s add
another method that returns just the key from the string that represents a record.
This is the test:

public void testGetKey()
{
 assertEquals(1, FilePersistenceServices.getKey(s1));
}

And this is the method:
static int getKey(String s)
{
 int key = -1;
 StringTokenizer st = new StringTokenizer(s, "\",");
 if(st.hasMoreTokens())
 {
 key = Integer.parseInt(st.nextToken());
 }
 return key;
}

After running the tests to make sure all your utility methods work as expected,
you are ready to begin implementing your class’s public methods.

58 CHAPTER 3
The Java development cycle

3.2.4 Implementing the public methods

Breaking out pieces of functionality into helper methods that you can test inde-
pendently makes the job of creating higher-level methods much easier. Because
you know the component parts work, you can have more confidence that whole
will work as well.

 The write() method uses the vector2String() method to convert the Vector
it is passed into a string, open a file, append the string, and close the file:

public static boolean write(String fileName, int key, Vector v)
{
 boolean success = false;

 String s = vector2String(v, key);
 try
 {
 BufferedWriter out =
 new BufferedWriter(new FileWriter(fileName, true));
 out.write(s); // write record
 out.newLine(); // end with newline
 out.close();
 success = true;
 }
 catch (IOException e)
 {
 success = false;
 }
 return success;
}

TIP You can avoid having to use the Quick Fix tool by using the Content Assist
function (press Ctrl-space or choose Edit→Content Assist). If you begin
typing Buff and use Ctrl-space, you can scroll through the list and select
the BufferedWriter class. When you do this, Eclipse quietly helps by
adding the import statement for the class if it is not already there.

The read() method reads lines from the file until it finds the one matching the
given key. Then it calls the string2Vector() method to convert the matching line
to a Vector:

public static Vector read(String fileName, int key)
{
 Vector v = null;
 try
 {
 // Open file for reading

The JUnit unit testing framework 59

 FileReader fr = new FileReader(fileName);
 BufferedReader in = new BufferedReader(fr);
 String str;
 boolean found = false;
 while ((str = in.readLine()) != null
 && !(found = (getKey(str) == key)))
 {
 }
 in.close();

 if (found) // record with key found
 {
 v = string2Vector(str);
 }
 }
 catch (IOException e)
 {
 }
 return v;
}

If you run the tests now, everything looks fine; but you need to think about some of
the things that could go wrong, and add tests to make sure you handle them cor-
rectly. What if you add different records with the same key? What if you try to retrieve
a nonexistent record? You need to extend your tests to cover these situations.

 Add another Vector and String pair to your test fixture:

Vector v1, v2;
String s1, s2;

Change the setUp() method accordingly:

protected void setUp() throws Exception
{
 super.setUp();
 v1 = new Vector();
 v1.addElement("One");
 v1.addElement("Two");
 v1.addElement("Three");

 v2 = new Vector();
 v2.addElement("A");
 v2.addElement("B");
 v2.addElement("C");

 s1 = "\"1\",\"One\",\"Two\",\"Three\"";
 s2 = "\"1\",\"A\",\"B\",\"C\"";
}

In general, you should only add tests and not remove any (unless, of course, require-
ments change). First, let’s decide what should happen if you try to add multiple

60 CHAPTER 3
The Java development cycle

records with the same key. Doing so would obviously be a problem, because it
would mean you could add records you can’t retrieve; you should not allow this.
So, let’s add more assertions to the testWrite() method—one that tries to add
the same record a second time (which should fail and return false), and another
that adds a different record (which should succeed):

public void testWrite()
{
 assertTrue(FilePersistenceServices.write("TestTable", 1, v1));
 assertFalse(FilePersistenceServices.write("TestTable", 1, v1));
 assertTrue(FilePersistenceServices.write("TestTable", 2, v2));
}

To makes these tests pass, you need to add a check to the write() method to
make sure a record with the same key does not already exist. All you need to do is
call the read() method:

public static boolean write(String fileName, int key, Vector v)
{
 boolean success = false;
 // make sure record with this key doesn't already exist
 if(read(fileName, key)!= null)
 {
 return success;
 }
 // etc.

There’s one problem, however: The first assertion now fails, because you already
have a record with a key of 1 from running the tests earlier. You can either change
the keys or delete the existing records. The latter is good functionality to imple-
ment, because you will want it anyway. In fact, two such methods are left to
implement: drop(), which deletes the entire table; and delete(), which deletes a
single record.

 You can test a drop() method by adding some records to the table, verifying
that you can retrieve them, dropping the table, and then verifying that you can
no longer retrieve any of the records. Here is the test method:

public void testDrop()
{
 FilePersistenceServices.write("TestTable", 1, v1);
 FilePersistenceServices.write("TestTable", 2, v2);
 assertNotNull(FilePersistenceServices.read("TestTable", 1));
 assertNotNull(FilePersistenceServices.read("TestTable", 2));
 assertTrue(FilePersistenceServices.drop("TestTable"));
 assertNull(FilePersistenceServices.read("TestTable", 1));
 assertNull(FilePersistenceServices.read("TestTable", 2));
}

The JUnit unit testing framework 61

The method to delete a file is smaller than the test:

public static boolean drop(String fileName)
{
 File f = new File(fileName);
 return f.delete();
}

Deleting a record is a little trickier. To do this, you need to open the file as a ran-
dom access file in read/write mode, advance through it until you find the record
you’re looking for, back up to the start of the record, and mark the record as
deleted by changing its key value to 0. (This is a rule we just made up: Records
are only allowed to have keys greater than 0. Records with a key equal to 0 should
be ignored. To be thorough, you may also want to add a check to the write()
method to prevent such records from being written along with the correspond-
ing test.) First, here is the test for the delete() method:

public void testDelete()
{
 FilePersistenceServices.write("TestTable", 1, v1);
 FilePersistenceServices.write("TestTable", 2, v2);
 assertNotNull(FilePersistenceServices.read("TestTable", 1));
 assertNotNull(FilePersistenceServices.read("TestTable", 2));
 assertTrue(FilePersistenceServices.delete("TestTable",1));
 assertNull(FilePersistenceServices.read("TestTable", 1));
 Vector w = FilePersistenceServices.read("TestTable", 2);
 assertEquals(w, v2);
}

As you can see, it’s similar to the previous test. You add a couple of records,
delete one, and then verify that the record you deleted can no longer be
retrieved, whereas the other can still be retrieved.

 Try this code for the delete() method:
public static boolean delete(String fileName, int key)
{
 String buffer = null;
 try
 {
 RandomAccessFile file = new RandomAccessFile(fileName, "rw");

 boolean cont = true;

 // find record by key
 while (cont)
 {
 // remember start of line
 long fp = file.getFilePointer();
 buffer = file.readLine();

62 CHAPTER 3
The Java development cycle

 if (buffer != null)
 {
 if (getKey(buffer) == key)
 {
 // return to beginning of line to delete
 file.seek(fp);
 file.writeChars("\"0\"");
 cont = false;
 }
 }
 else
 {
 cont = false;
 }
 }
 file.close();
 }
 catch (FileNotFoundException e)
 {
 }
 catch (IOException e)
 {
 }
 return (buffer != null);
}

When you run the unit tests, the testDelete() method will fail. Clicking on the
Hierarchy tab and then clicking on testDelete displays the Failure Trace (see fig-
ure 3.8). It reveals that the problem occurred in the Java Integer.parseInt()
method. Reading down the trace, you can see that this method was called (recur-
sively) by Integer.parseInt(), which was called in line 171 of the FilePersis-
tenceServices class in the getKey() method. This method in turn was called by
read(). This is curious, because you haven’t made any changes to these methods.
To investigate further, you’ll need to use the debugger.

3.3 Further adventures in debugging

The debugger is one of the most valuable tools that Eclipse provides, but using it
effectively requires a bit of practice. It’s easy to find yourself stepping fruitlessly
through code, trying to find some clue to what’s gone wrong. When that happens,
it’s best to step back and devise a strategy to zero in on the problem. One common
difficulty is the inability to find where the problem occurs; you only see a later
consequence, such as a null pointer error, and you need to work backward to find
out where the pointer went null (or check your assumption that it was valid to
begin with).

Further adventures in debugging 63

Let’s begin by looking at the line where the problem first appears: line 166 in
FilePersistenceServices. (Note that you can make the editor show line num-
bers by selecting Windows→Preferences→Java→Editor from the main menu and
checking the Show Line Numbers box, or you can watch the line number in the
lower-right corner of the Workbench as you move the cursor to find a specific
line. Your numbers may vary.) Here is the line in question:

key = Integer.parseInt(st.nextToken());

To investigate what’s going on in more detail, first break this line in two, so you
can see the return value from st.nextToken() by putting it into a variable:

String token = st.nextToken();
key = Integer.parseInt(token);

Next, set a breakpoint by double-clicking in the left margin next to the second
line. To begin debugging, do the following:

Figure 3.8
Clicking on the
testDelete()
method in the JUnit
test view displays
the failure trace.

64 CHAPTER 3
The Java development cycle

1 Select the test case class FilePersistenceServicesTests in either the
Package Explorer or the editor pane.

2 Select Run→Debug As→JUnit Test from the main menu.

Assuming no other breakpoints have been inadvertently set (this is easy to do by
accidentally double-clicking instead of single-clicking when using the Quick Fix
feature), the program will run until it reaches the breakpoint in the getKey()
method. (If you encounter other breakpoints on the way, you can clear them by
double-clicking on them. Then click Resume in the Debug view title bar to con-
tinue.) The value of token appears in the Variables view in the upper-left pane of
the Workbench. If you click the Resume button on the Debug view title bar
repeatedly, you’ll see that the value of token is either 1 or 2 for a while, until a
strange value appears—a single quote.

3.3.1 Setting breakpoint properties

Debugging can be tedious like this, when you hit a breakpoint many times before
a problem occurs. There are often ways to avoid this type of tedium. Sometimes,
for example, you know that a problem occurs on a specific iteration, so you can
set the breakpoint to stop only on a specific hit count. To do so here, right-click
on the breakpoint and select Breakpoint Properties. Check the Enable Hit Count
option and enter a number in the Hit Count field (see figure 3.9).

 Other times—as is the case here—you don’t know how many times the break-
point must be hit before the problem occurs, but you can watch for specific con-
ditions. In this case, you’re apparently having a problem parsing the key, which
you know should only be 0, 1, or 2. You can set the breakpoint to suspend execu-
tion if the key takes on another value. To do so, right-click on the breakpoint,
select Breakpoint Properties, check the Enable Condition option, and enter the
following condition:

!token.equals("1") && !token.equals("2")

If the debugger is still running (possibly paused on a breakpoint), click the Ter-
minate button and start the debugger again; the program will stop when token is
assigned an unexpected value. When this happens, click on the variable name
token in the Variable view and click the Show Detail Pane button (the second but-
ton) in the Variables view title bar to see the value in more detail (see figure 3.10).
The value appears as a box signifying an undisplayable character. You can see even
more detail by looking into the complete string that it came from, s. Click on the
plus sign next to s to expand it, and then click on the value attribute. You’ll see
that it begins with the character box, followed by double quotes, box, 0, box, and

Further adventures in debugging 65

double quotes (see figure 3.11). This alternation between unknown characters
and valid characters suggests that you somehow got a string that uses double-
byte characters when you were expecting single-byte characters.

 As you might deduce, your new delete() method appears to have botched up
the database file when it tried to replace an existing key with 0 using RandomAc-
cessFile’s writeChars() method. You can verify this problem by opening the

Figure 3.9
Breakpoint properties allow you to
set a breakpoints based on count or
on a conditional expression.

Figure 3.10
The Variables view. Clicking the Show Detail Pane
tool button shows more detail in the bottom part of
the view.

66 CHAPTER 3
The Java development cycle

TestTable file. (To make this new file appear, you may need to refresh the Pack-
age Explorer view: Select the Persistence project in the Package Explorer, and
then select File→Refresh from the main menu.)

3.3.2 Finding and fixing a bug

Finding a bug is like playing detective: You need to gather clues and investigate
all the likely suspects. Here, the observation that the data in the file is getting cor-
rupted is an important clue that should spur you into looking more carefully into
the documentation for RandomAccessFile and the other classes you are using for
file access—especially because you are using two different APIs, which is a little
suspicious. You’ll discover that there is an incompatibility between Java’s Random-
AccessFile and the BufferedReader and BufferedWriter classes. RandomAccessFile
doesn’t provide the same degree of character set support that the BufferedWriter
and BufferedReader classes provide. On a U.S. Windows system, for example, Buff-
eredWriter and BufferedReader use a single-byte Western European character set
by default. With RandomAccessFile, you have two choices: writeChars(), which
writes a string as a sequence of two-byte Unicode characters; and writeBytes(),
which writes a string as a sequence of single-byte characters. If you aren’t aware of
the difference between these two methods, and aren’t aware that BufferedReader
and BufferedWriter are writing using a single-byte character set, it’s easy to be
tempted into making a wrong selection.

 The quick fix is to use the RandomAccessFile’s writeBytes() method instead
of writeChars(). Another more comprehensive solution is to eliminate the pos-
sibility of character set incompatibilities by using only random access to read
and write to the file. However, this approach would require a lot of work to
implement, and you can’t be sure it wouldn’t introduce new problems, such as
poor performance.

Figure 3.11
The corrupted string, showing alternation
between unknown and valid characters

Further adventures in debugging 67

 Ultimately, you don’t need to worry about the incompatibility between single-
byte character sets in this situation. You will only be changing a number enclosed
in quotes to another number enclosed in quotes, and these characters are the
same in virtually all single-byte character sets—so the quick fix is good enough,
at least for now. Here is the corrected code in the delete() method:

// ...
if (getKey(buffer) == key)
{
 // return to beginning of line
 file.seek(fp);
 file.writeBytes("\"0\""); // not writeChars()!
 cont = false;
}
// ...

Unfortunately, this fix still doesn’t make your failures in the unit tests go away,
because the file is botched and your program continues to fail. One quick fix is
to delete the botched file manually and start over. Another is to delete the file at
the start of your tests, perhaps in the setUp() method, like this:

protected void setUp() throws Exception
{
 super.setUp();
 FilePersistenceServices.drop("TestTable");

This approach causes another problem, however, because the setUp() method is
run before every test method. If you delete the table every time, the testRead()
method can’t depend on the results of the testWrite() method. You can either
replace the tests with a single method that tests both the read() and write()
methods, or you can make the tests independent of each other. The second
choice is the best option. You can leave the testWrite() method as it is, but you
need to expand testRead() as follows:

public void testRead()
{
 FilePersistenceServices.write("TestTable", 1, v1);
 FilePersistenceServices.write("TestTable", 2, v2);
 Vector w;
 w = FilePersistenceServices.read("TestTable", 1);
 assertEquals(w, v1);
 w = FilePersistenceServices.read("TestTable", 2);
 assertEquals(w, v2);
}

After these changes, if the unit tests still fail with a NumberFormatException, it’s
possible the setUp() method was unable to delete the database file because an

68 CHAPTER 3
The Java development cycle

instance of the unit tests is still running—perhaps you abandoned an instance by
leaving it paused at a breakpoint in the debugger. You can see if this is the case
by looking in the Debug view’s main panel for suspended threads (in particular,
threads named main). If nothing is running, clicking Remove All Terminated
Launches should clear all the entries in this list (see figure 3.12). If threads are
still running, keep clicking the Terminate button followed by Remove All Termi-
nated Launches until none are left.

3.4 Logging with log4j

A tried and true alternative to the techniques you’ve just seen for testing and
debugging code is to use print statements. For example, it’s common in Java to
put a main() method inside a class that instantiates the class, runs various tests,
and prints the results using println() statements.

 You can create unit tests by putting code like the following in your FilePer-
sistenceServices class instead of using JUnit:

public class FilePersistenceServices
{

 public static void main(String[] args)
 {
 FileIO.drop("TestTable");

 Vector v = new Vector();
 v.addElement("One");
 v.addElement("Two");
 v.addElement("Three");
 boolean b = FileIO.write("TestTable", 1, v);
 Vector w = FileIO.read("TestTable", 1);
 System.out.print("Count: " + w.size());

 v = new Vector();
 v.addElement("A");

Figure 3.12
The Remove All
Terminated Launches tool
button clears the Debug
view of threads that have
terminated, leaving only
running or suspended
threads.

Logging with log4j 69

 v.addElement("B");
 v.addElement("C");
 v.addElement("D");
 b = FileIO.write("TestTable", 2, v);
 w = FileIO.read("TestTable", 2);
 System.out.print("Count: " + w.size());

 // etc.
 }

// etc.

Likewise, for debugging, instead of delving into the code using the debugger, you
can include print statements that print out suspect variables at different points in
the program. Although they are good in a pinch, print statements don’t have the
power and flexibility that dedicated tools have. The same is true about print
statements used for maintaining a transaction journal or writing errors to a log:
Tools created specifically for logging provide far more options and can be con-
figured at runtime, in a way print statements cannot.

 Unlike print statements, logging tools are not limited to sending output to a
console or a file. For instance, they can also write to a database or send email mes-
sages. One such tool is the logging API that has been included in Java since JDK 1.4.
However, because not everyone uses JDK 1.4, the best option is to use the tool on
which the Java API is based: log4j. Even though it is a little more difficult to set
up initially than the JDK version, it has the virtue of being useable on JDK 1.1,
1.2, 1.3, and 1.4. Therefore, log4j is what we’ll examine here.

3.4.1 Loggers, appenders, and pattern layouts

If print statements are like using a fax machine, log4j is like using a messenger
service. You have many more options than simply printing directly to a destina-
tion such as the console or a file. To enable this flexibility, three actions must hap-
pen dynamically (normally, based on a configuration file) before a message can
be delivered:

■ The message is assigned a priority and filtered according to that priority.
■ The message’s destination (or destinations) is determined dynamically.
■ The message is formatted appropriately for each destination.

In order to follow how log4j performs these three actions, you need to under-
stand three key log4j concepts: loggers, appenders, and pattern layouts.

70 CHAPTER 3
The Java development cycle

Loggers
A logger is used in an application just like System.out is used for print state-
ments. It is an object you use to send messages.

 Loggers exist in a hierarchy. The root logger is anonymous and exists auto-
matically. You can get this logger by using the Logger.getRootLogger() static
method. It’s preferable, however, to instantiate your own named logger (which
inherits from the root logger) by calling the Logger.getLogger() method. Assum-
ing everything is properly configured, you can obtain a logger named myLogger
as follows:

logger = Logger.getLogger("myLogger");

Loggers do not have simple methods like print() and println(); instead they
have methods that indicate the priority of the message. The five methods, in ascend-
ing order of priority, are as follows:

■ debug()

■ info()

■ warn()

■ error()

■ fatal()

These methods all formally accept type Object; but whatever the object is, it will
be converted to a String by calling the object’s toString() method before it’s deliv-
ered to its destination.

 As an example, you can send information that is useful for debugging purposes
using the debug() method:

logger.debug("Entering method");

On the other hand, you probably want to log exceptions (such as IOExceptions)
at a higher priority. For example, you might have the following catch clause in
your code:

catch (IOException e)
{
 logger.error("Caught:" + e);
}

The priority determines whether a message is sent to its destination. This con-
trol is important, because you want your programs to provide different levels of
information depending on the circumstances. For example, if you are testing a
program, you may want to be able to look through a log and see everything the
program did: every method it entered, every user who logged in, and so on. But

Logging with log4j 71

if you are running the program in production, you don’t want to log potentially
sensitive information like usernames and passwords. You also don’t want perfor-
mance degraded by excessive logging. You can ignore debug and info messages,
and instead log all errors to a file and fatal errors to both a file and the console.
log4j lets you change the level of logging without recompiling by using a config-
uration file, where a level is assigned to each logger.

Appenders
An appender is an object that performs actual output. The simplest appender is
the ConsoleAppender, which corresponds to System.out. Obviously, it writes out-
put to the console.

 Appenders are available to write to files, to write to databases using JDBC,
and to send email, among other things. Table 3.1 lists some of the appenders
included with log4j.

A logger can be associated with one or more appenders. If a logger is associated
with the ConsoleAppender and a RollingFileAppender, for example, messages will
be sent both to the console and to the file, providing they meet or exceed the
level to which the logger has been set.

Layout
A layout is an object that formats the message according to a format string, which
can contain both regular text and special patterns called conversion specifiers. Reg-
ular text is printed as is. Conversion specifiers print different types of data dif-

Table 3.1 Appenders, which perform output in log4j

Appender Description

ConsoleAppender Logs to the console

FileAppender Logs to a file

RollingFileAppender Logs to a file and creates a backup when the file reaches a specified size

DailyRollingFileAppender Logs to a file, which is rolled over to a backup file at a specified time

JDBCAppender Logs to a database

NTEventLogAppender Logs to the Windows event log (available only on Windows)

SMTPAppender Logs using the SMTP mail server (sends email)

SocketAppender Logs to a TCP socket

72 CHAPTER 3
The Java development cycle

ferent ways, depending on the specifier and its options. (If you have used the
printf() function’s format specifiers in C, conversion specifiers will be familiar.)

 A conversion specifier begins with a percent sign (%) followed by, at minimum,
one other character (usually a letter) indicating what is to be printed. (Note that
the specifier characters are case sensitive, so m is different than M.) For example,
the specifier character m refers to the message passed to the logger; to print the
message alone, the pattern layout is %m. Typically, however, you include additional
information, such as the date and time, and, for debug information, perhaps the
filename and line number. Table 3.2 lists some generally useful specifiers. The first
eight (up to %%) can be safely used without incurring a serious performance cost.
The last four (%C, %F, %l, and %L) provide information about the code that logged
the message, and should be used carefully because they are more costly to execute.

You can also add other formatting characters to conversion specifiers between
the percent sign and the specifier character. All are optional, but if any appear,
they must appear in the following order:

Table 3.2 log4j conversion specifiers that print data in different ways

Specifier Description

%c Name of the logger. (In previous versions of log4j, loggers were called categories; hence
the abbreviation.)

%d Date and time. The default format is ISO8601.

%m Message passed by the logger.

%n Platform-dependent new line string. (Depending on the platform, it may be "\r\n",
"\n", or "\r".)

%p Priority of the message.

%r Elapsed time, in milliseconds, since the application was started.

%t Name of the thread.

%% Percent sign.

%C Fully qualified name of the class.

%F Filename.

%l Location information. Depending on the JVM, may include the fully qualified name of the
method, the source filename, and the line number. If this is the last specifier before %n in
a layout, the message provides a hotlink to the source code in the Eclipse Console view.

%L Line number.

Logging with log4j 73

■ - (dash)—Left justify. (Default is right justify.)
■ n (number)—Minimum width. Data is padded with spaces if necessary.
■ m—Maximum width. Data is truncated from the left if necessary.

To limit the length of a message to 50 characters, for example, you can use the
following:

%50m%n

To display the file, line number, and message in aligned columns, you can use
the following:

%-20.20F %-5.5L: %50m%n

Several conversion specifiers can be followed by an additional option enclosed in
braces. For example, the date specifier can be followed by a date format specifier.
The date format specifier accepts a pattern string using the same syntax as the
standard Java SimpleDateFormat, but log4j has several formats predefined that
perform significantly better. Table 3.3 lists the log4j formats, the corresponding
SimpleDateFormat style pattern, and an example of what their printout looks like.

Here is an example of a date specifier using the ABSOLUTE date format:

%d{ABSOLUTE}

The next example uses a SimpleDateFormat pattern:

%d{MMM d, YYYY hh:mm:ss a}

This would display the following, for example:

Jan 8, 2003 6:16:10 PM

3.4.2 Configuring log4j

Although it is possible to configure log4j programmatically—that is, assign
appenders to loggers and layouts to appenders using various methods in the
log4j API—the best way to do this is to use a configuration file. Doing so makes it

Table 3.3 log4j date formats

log4j format SimpleDateFormat style pattern Sample printout

ABSOLUTE hh:mm:ss,SSS 18:16:10,432

DATE dd MMM YYYY hh:mm:ss,SSS 08 Jan 2003 18:16:10,432

ISO8601 YYYY-mm-dd hh:mm:ss,SSS 2003-01-08 18:16:10,432

74 CHAPTER 3
The Java development cycle

possible to change the configuration easily, without having to recompile the
application. This file can be in the form of a Java properties file or an XML file.
You’ll use a properties file here, because this is the traditional format and most
log4j documentation and examples use it.

 By default, log4j looks for a configuration file called log4j.properties in the
classpath. In a basic configuration file, you just need to set up the root logger with
an appender or two. The named loggers that you instantiate in your code will
inherit all their properties from this root logger. You need to do the following:

1 Specify the priority level for the root logger.
2 Specify, using arbitrary names as keys, which appenders are to be associ-

ated with the root logger.
3 Set properties, such as the pattern layout, for each appender you named.

Specifying the root logger
You specify the information for the root logger (priority level and appenders)
using the following format:

log4j.rootLogger=PriorityLevel, Appender1 [, Appender2 [, etc.]]

The PriorityLevel can be any of the values DEBUG, WARN, and so on. Appender1,
Appender2, and etc. can be any name you choose to give your appenders; these
names are used as keys throughout the rest of the configuration file. The follow-
ing line sets the root logger’s priority to DEBUG and associates two appenders
named myConsole and myLogFile with the root logger:

Set root logger to DEBUG and assign two appenders
log4j.rootLogger=DEBUG, myConsole, myLogFile

The remaining lines in the configuration file, which assign properties to append-
ers, are key=value pairs having this basic format:

log4j.appender.KeyName[.Property[.Property[.etc]]={Class|Value}

Adding appenders
The first thing you need to define for each appender is a class. This then deter-
mines what properties are applicable. For example, a console appender will not
have a filename associated with it, but a file appender will. If this property in turn
is a class, it too may have properties you can set. (Refer to the log4j Javadoc for
specific information about each of the appender classes.)

Logging with log4j 75

 The following lines specify that the myConsole appender is of type ConsoleAp-
pender and set its layout property to the PatternLayout class. You then assign a
conversion pattern to the layout.

Console appender
log4j.appender.myConsole=org.apache.log4j.ConsoleAppender
log4j.appender.myConsole.layout=org.apache.log4j.PatternLayout
log4j.appender.myConsole.layout.ConversionPattern=%5p [%t] (%F:%L)
➥ - %m%n

Next, you configure the myLogFile appender as a RollingLogFileAppender. You
specify that it should create a backup file when its size exceeds 100KB and that it
should keep two backups at a time. As you did for the console appender, assign it
PatternLayout and specify a conversion pattern:

Rolling file appender
log4j.appender.myLogFile=org.apache.log4j.RollingFileAppender
log4j.appender.myLogFile.File=mylog.log
log4j.appender.myLogFile.MaxFileSize=100KB
log4j.appender.myLogFile.MaxBackupIndex=2
log4j.appender.myLogFile.layout=org.apache.log4j.PatternLayout
log4j.appender.myLogFile.layout.ConversionPattern=
➥ %d{MMM d, yyyy hh:mm:ss a}: %p [%t] %m%n

Because the root logger’s priority is set to DEBUG, all messages with a priority of
DEBUG or higher—which is to say, all messages—are logged. You override this
default for individual appenders by setting the threshold property. Let’s set the
priority for the log file to WARN by adding the following line, so that DEBUG and
INFO messages are ignored:

log4j.appender.myLogFile.threshold=WARN

With all these preliminaries out of the way, you are finally ready to use log4j
inside Eclipse.

3.4.3 Using log4j with Eclipse

Let’s try out log4j by adding logging to the persistence class. The first step is to
obtain the log4j JAR file and add it to your project’s classpath. Because log4j does
not come with Eclipse, you must download it from the Apache Software Founda-
tion at http://www.apache.org, where it is part of the Jakarta project. You have a
choice of downloading it in either Zip or tar format; depending on your system,
one may be more convenient than the other.

 After downloading, unzip or untar the file to a directory such as C:\log4j.
Doing so will install the complete log4j distribution, which includes the log4j JAR
file, documentation, examples, and source code in a version-specific subdirectory.

76 CHAPTER 3
The Java development cycle

Assuming you installed version 1.2.8 of log4j according to the earlier example,
the log4j JAR file is C:\log4j\ jakarta-log4j-1.2.8\dist\lib\log4j-1.2.8.jar.

 Because you will probably use this tool in most of your projects, create a classpath
variable for it in the Workbench’s Java preferences, such as LOG4J, and use this
variable to add log4j to the Persistence project’s classpath in the project proper-
ties. (See Chapter 2 for complete instructions.)

 Next, create the log4j configuration file. Right-click on the Persistence project
and select New→File, make sure the Persistence folder is selected, enter log4j.pro-
perties as the filename, and click Finish. The empty file will appear in the editor
pane. Type in the configuration file described in the previous section.

 Now you can add logging code to your FilePersistenceServices class. First
add a logger. It’s a common practice to add a logger to each class using the class
name like this:

public class FilePersistenceServices
{
 static Logger logger =
 Logger.getLogger(FilePersistenceServices.class);

 // etc.

As you might expect, entering this code will cause Eclipse to complain and dis-
play the familiar Quick Fix light bulb in the left margin. Click on the bulb to bring
up a list of suggestions. If you are using JDK 1.4 or greater, this list will include
the option to import java.util.logging.Logger—do not select this option! If log4j
is properly installed and included in the classpath, the list should also include
the option to import org.apache.log4j.Logger; choose this class instead.

 It’s time to add messages to your methods. Let’s use the read() method as an
example. Add a debug() method at the top, to log when the method is entered:

 public static Vector read(String fileName, int key)
 {
 logger.debug("Entering read()");
 Vector v = null;
 // etc.

Logging when methods are entered and exited is sometimes useful, but doing so
usually only leads to a lot of useless information. Setting the priority of these
types of messages to debug makes it easy to turn them off while letting other, more
important messages through.

 Let’s add another message, using the warn() method, to report when the read()
method fails to find a record. Add the following else clause after the if state-
ment near the bottom of the method:

Summary 77

 if (found) // record with key found
 {
 v = string2Vector(str);
 }
 else
 {
 logger.warn("Failed to find key: " + key);
 }

Run the unit tests. The console will display all messages (see figure 3.13), whereas
the log file, whose threshold is set to WARN, will contain only the messages from
the warn method. To view the log file, right-click on the Persistence project in the
Package Explorer view and select Refresh from the context menu; doing so updates
the Files view to include the newly created file. Double-click on it to open it in the
text editor. Here are the first few lines from mylog.log:

Jan 8, 2003 10:47:22 PM: WARN [main] Failed to find key: 1
Jan 8, 2003 10:48:10 PM: WARN [main] Failed to find key: 2
Jan 8, 2003 10:48:10 PM: WARN [main] Failed to find key: 2
Jan 8, 2003 10:48:10 PM: WARN [main] Failed to find key: 2

3.5 Summary

Eclipse is a rich environment for developing Java applications. Because of its exten-
sible nature, many tools are available that promote a good development method-
ology, such as the JUnit framework for testing.

Figure 3.13 Log messages in the console. The console appender inherits the root logger's priority
threshold, which is set to debug, so all messages are displayed here.

78 CHAPTER 3
The Java development cycle

 JUnit encourages you to build tests up front, to set the bar for your coding
efforts. It may feel awkward, or even backward at first, but once you become com-
fortable with test-driven development, you may find that you are producing bet-
ter quality code in a shorter period of time.

 Because of the way JUnit and other plug-ins integrate seamlessly, it’s often
difficult to tell where one ends and the other begins. This integration lets you work
more smoothly when you need to switch from one tool, such as JUnit, to another,
such as the JDT’s debugger.

 In this chapter we also looked at another tool that can change the way you
work: log4j. Although we didn’t explore its use in much detail, dwelling instead
on how to set it up, you are encouraged to get into the habit of using log4j where
you would ordinarily use print statements. You’ll find its flexibility (not to men-
tion the ability to easily turn it off and on) a refreshing change from using Sys-
tem.out.println() statements—and it’s less ugly, too.

79

4Working with
source code in Eclipse

In this chapter…
■ Importing an external project
■ Adding a new package to the Persistence

component
■ Refactoring

80 CHAPTER 4
Working with source code in Eclipse

One of the benefits of pair programming is that it provides the opportunity to
see in depth how someone else works—how he approaches a problem and thinks
things through, whether she uses the mouse to click on menus or uses keyboard
shortcuts, whether he writes a little or a lot of code before testing, and so on. It’s
quite common to learn something that surprises you, which could have made
your life much easier in the past. This chapter is an attempt at providing a simi-
lar experience: As you continue to develop the program you began in chapter 3,
you’ll be introduced to some of Eclipse’s key features that make the job easier.

4.1 Importing an external project

Unless you’ve been working exclusively with Eclipse for a long time, you’ll occa-
sionally find that you have source code you created with another tool or editor,
which you now want to move into Eclipse—either to start a new project or to incor-
porate into an existing project. Suppose, for example, that as an exercise you cre-
ated a class hierarchy representing stars, planets, and moons (see figure 4.1).
Now, you want to use the persistence class you developed in chapter 3 to store
the astronomy data. Assume your astronomy Java source files are in a Java pack-
age called org.eclipseguide.astronomy and are located in the following direc-
tory structure:

C:\ASTRONOMY
+–––org
 +–––eclipseguide
 +–––astronomy
 CelestialBody.java
 Moon.java
 OrbitingBody.java
 Planet.java
 Star.java

There are several ways you can bring this code into Eclipse. You can use Eclipse’s
Import feature to copy the source code into your workspace directory, either as a
new project or as a new folder in an existing project. Either way, the original files
are only copied and otherwise are left untouched. In some situations you need to
work directly with files outside of Eclipse’s workspace directory; usefully, Eclipse
provides a way to add a link to this external directory to an Eclipse project. Links
of this type will be covered in chapter 7. Here you will use the Import feature.

 To import these files and their directory structure into Eclipse, follow these steps:

1 Right-click on the Persistence project in the Package Navigator and select
Import from the context menu.

Importing an external project 81

2 In the Import dialog box that appears, select File System and click Next.
3 In the next dialog box, either click Browse to browse for your source files

or type the directory (c:\astronomy) directly into the From Directory text
box. The box below From Directory shows a directory tree from which
you can select the directories and folders you want to import. (If you
typed in the directory name in the previous step, you will need to press
Tab or click in this box to force it to update and show this tree.) In this
case, you want to import the entire source tree, so select the checkbox
next to Astronomy (see figure 4.2).

4 Below this are several options; accept the default selection, Create Selected
Folders Only.

Figure 4.1
Astronomy class diagram

82 CHAPTER 4
Working with source code in Eclipse

5 Click Finish to complete the import. Figure 4.3 shows the Package Explorer
with the org.eclipseguide.astronomy package added.

After the Import, you can select File→Save All from the Eclipse main menu and
examine the changes made to your workspace directory structure. The Java source
files are found in the following directories:

C:\ECLIPSE\WORKSPACE\PERSISTENCE
|
+---org
 +---eclipseguide
 +---astronomy
 | CelestialBody.java
 | Moon.java
 | OrbitingBody.java
 | Planet.java

Figure 4.2 Importing the astronomy source code. The box below From
Directory lets you explore the directory tree and select directories and files
for importing. Here astronomy and all its subdirectories are selected.

Extending the persistence component 83

 | Star.java
 |
 +---persistence
 FilePersistenceServices.java
 FilePersistenceServicesTest.java

Eclipse also provides another way of importing code: using drag-and-drop. If
you open a Windows Explorer window and locate the astronomy directory, you can
click on the org folder, and then drag it and drop it on the Persistence project name.

4.2 Extending the persistence component

In this chapter you’ll create a class that allows you to save instances of any of the
concrete astronomy classes: Star, Planet, or Moon. This is a fairly elaborate exam-
ple, but it will let us cover issues addressed by some of Eclipse’s refactoring tools
more realistically, and we hope it will be more interesting and less contrived than
a smaller example.

 Because the FilePersistenceServices class expects vectors, the job of this
new class will be to map between objects and vectors. You’ll call this class Object-
Manager, and it will have the following methods, paralleling the methods in
FilePersistenceServices:

public Object get(int key)
public boolean save(Object o, int key)
public boolean update(Object o, int key)

Figure 4.3
Package Explorer with the
org.eclipseguide.astronomy
package added

84 CHAPTER 4
Working with source code in Eclipse

public boolean delete(int key)
public boolean dropObjectTable()

4.2.1 Creating a factory method

The ObjectManager class is specifically designed for use with the FilePersistence-
Services class, but in the future, as mentioned previously, you may want to pro-
vide additional options—in particular, the ability to use a database. This change
should not affect a client class using the ObjectManager class. To ensure this, you’ll
provide a factory method that returns an ObjectManager object, rather than letting
the client class instantiate the ObjectManager directly. This way, you can change
the type of the object that is returned—to a subclass of ObjectManager, for exam-
ple. We’ll consider this topic in a bit more detail when we look at refactoring later
in this chapter.

 The signature of the factory method for ObjectManager looks like this:

public static ObjectManager createObjectManager(Class type);

You can require that clients use this method by adding a private do-nothing con-
structor, which prevents them from instantiating the class directly:

private ObjectManager(){}

You also need to create the stubs for your methods; this is an example of what
the get() method looks like at first:

public Object get(int key)
{
 return null;
}

The stubs for the rest of the methods—save(), update(), delete(), and dropOb-
ject()—are omitted here in the interest of saving space, but they should all
return false.

4.2.2 Creating the unit test class

With these methods defined (but not implemented), you can begin to write some
JUnit tests. You’ll put both the ObjectManager class and its test class in the org.
eclipseguide.persistence package. Follow these steps:

1 Right-click on the package name and select New→Other to bring up the
New dialog box.

2 If the Java selection on the left side of the screen hasn’t been expanded
yet, click on the plus sign to do so. Select JUnit on the left, select TestCase
on the right, and click Next.

Extending the persistence component 85

3 Verify that the package name is correct. If you right-clicked on Persistence
instead of the package, this box will be empty and you’ll need to type in
the name.

4 Skip the Test Case field, and type the name of the class you’ll be testing
(ObjectManager) in the Test Class field instead; notice that Eclipse auto-
matically fills in the Test Case as you type.

5 Your test case this time is one all-inclusive test, so you won’t require any
method stubs; make sure none of the boxes under Which Method Stubs
Would You Like To Create are checked. Click Finish.

4.2.3 Working with the astronomy classes

The unit tests basically let you prototype how you’d like to be able to use the
ObjectManager class. You’ll use one of the concrete astronomy classes, Star, for
your tests. Let’s first take a look at Star.java:

package org.eclipseguide.astronomy;

import java.util.Vector;

public class Star extends CelestialBody
{

 public String catalogNumber;
 public double absoluteMagnitude;
 public String spectralType;
 public String constellation;
 public String galaxy;
}

Note that the class has been simplified slightly by making the constellation field
a string and omitting the field planets, because the Persistence class does not
support nested classes.

package org.eclipseguide.astronomy;

abstract public class CelestialBody
{
 public String name;
 public long radius;
 public long mass;
 public long rotationPeriod;
 public long surfaceTemperature;
}

These classes allow other classes to directly read and set their attributes. In many
cases, you want to limit access by making the fields private and using getXXX()

86 CHAPTER 4
Working with source code in Eclipse

and setXXX() methods to read or set them. For reasons you’ll see shortly, you
need to leave these attributes public; but should you ever need getter and setter
methods, Eclipse can generate them for you automatically:

1 Click on the source code and select Source→Generate Getter and Set-
ter from the context menu. Doing so brings up the Getter and Setter
dialog box.

2 Click Select All to generate both getXXX() and setXXX() methods for all
attributes, and then click OK.

In your data model, however, these classes represent a type of object called a value
object that needs to work intimately with your ObjectManager class. You’ll use the
reflection API to access the object’s values; doing so multiplies the cost of indirec-
tion that getter and setter methods introduce, because it’s much harder to deter-
mine a class’s methods and their signatures and then call the methods than it is
to access attributes directly.

 Also, because the astronomy classes are in a separate package, the classes them-
selves need to be public in order for ObjectManager to access them. For reasons such
as these—making access easy and efficient—it’s typical for value objects to have
public attributes. (Because they’re usually used in multitier situations, they’re
also typically serializable, but that’s a topic for another time.)

 If you tried the Generate Getter and Setter feature as described previously,
you need to revert to the original file by using Eclipse’s Undo feature. Either select
Edit→Undo from the menu twice (once to undo the Generate Getter and Setter
function and once to undo the change from public to private) or use the key-
board shortcut Ctrl-Z.

 You need to make one change to your astronomy classes. To support JUnit, you
must implement an equals() method that allows JUnit to test if two objects are
equivalent. This method needs to compare each field in the object to the fields
in another object that is passed in as a parameter. Here is the method for Star:

// ...
public class Star extends CelestialBody
{

 //...

 public boolean equals(Object o)
 {
 boolean equal = false;

 if (o instanceof Star)
 {

Extending the persistence component 87

 Star star = (Star) o;
 equal = cmpStrings(catalogNumber, star.catalogNumber)
 && absoluteMagnitude == star.absoluteMagnitude
 && cmpStrings(spectralType, star.spectralType)
 && cmpStrings(constellation, star.constellation)
 && cmpStrings(galaxy, star.galaxy);
 equal = super.equals(o) && equal;
 }
 return equal;
 }
}

Notice two things. First, equals() uses the method cmpStrings() to compare
strings. This helper method, found in the CelestialBody superclass, helps sim-
plify the logic; comparing strings is a little messy, because it is valid for them to be
null, in which case the String equals() method fails due to a null pointer error.
Second, notice that Star’s equals() method calls the superclass equals() method.

 Here are the CelestialBody equals() method and the cmpStrings() helper
method:

// ...

abstract public class CelestialBody
{
 // ...
 public Object get(int key)
 {
 return null;
 }

 public boolean equals(Object o)
 {
 boolean equal = false;

 if (o instanceof CelestialBody)
 {
 CelestialBody body = (CelestialBody) o;
 equal = cmpStrings(name, body.name)
 && radius == body.radius
 && mass == body.mass
 && rotationPeriod == body.rotationPeriod
 && surfaceTemperature == body.surfaceTemperature;

 }
 System.out.println("leaving CelestialBody equals()");
 return equal;
 }

 public static boolean cmpStrings(String a, String b)
 {
 if (a == null && b == null) // both null

88 CHAPTER 4
Working with source code in Eclipse

 {
 return true;
 }
 if (a == null || b == null) // one null
 {
 return false;
 }
 return a.equals(b); // ok to test
 }
}

4.2.4 The Star test case

Begin your test method by obtaining an ObjectManager for the Star class and
then calling the dropObjectTable() method to delete any data that may have
been left over from a previous test run:

public void testStar()
{
 // start fresh by dropping old table
 ObjectManager starMgr =
 ObjectManager.createObjectManager(Star.class);
 starMgr.dropObjectTable();

Now you’re ready to create a Star object and populate it with data:

 Star s = new Star();

 // fields in Star
 s.catalogNumber = "HD358";
 s.absoluteMagnitude = 2.1;
 s.spectralType = "B8IVp";
 s.constellation = "Andromeda";
 s.galaxy = "Milky Way"; // (Just a guess...)

 // fields in superclass CelestialBody
 s.name = "Alpheratz";
 s.radius = 5;
 s.mass = 0;
 s.rotationPeriod = 0;
 s.surfaceTemperature = 9100;

As usual, when you type in this code, Eclipse alerts you that the type Star is unre-
solved and offers some suggested ways to fix this situation. Choose to import
org.eclipseguide.astronomy.Star. Note that if you had chosen to import the
astronomy classes into another project, you would instead need to add the classes
to the project’s classpath.

 Save this star by calling the save() method, wrapped with a JUnit assertTrue()
method:

Extending the persistence component 89

 // save it
 assertTrue(starMgr.save(s, 1));

Next, make sure you can retrieve it, and check that it has the same values you put in:

 // make sure we can retrieve it correctly;
 Star newStar = (Star) starMgr.get(1);
 assertNotNull(newStar);
 assertEquals(s, newStar);

In addition, test to make sure that duplicates are rejected, that you can modify objects,
and that you can delete them. Here is the rest of the testStar() test method:

 // modify and update
 newStar.absoluteMagnitude = 123;
 newStar.radius = 500;
 starMgr.update(newStar, 1);

 // make sure changes are ok; verify it's a different object
 Star modStar = (Star) starMgr.get(1);
 assertNotSame(newStar, modStar);

 // try deleting
 assertTrue(starMgr.delete(1));
 assertNull(starMgr.get(1));
}

4.2.5 Creating a test suite

Once you have two or more test case classes, you want to create a test suite that
runs all the tests at once. To do this:

1 Right-click on the org.eclipseguide.persistence package.
2 Select Right→New→Other.
3 Click on the plus sign to expand the choices for Java and select JUnit on

the left side of the dialog box.
4 Select TestSuite on the right and click Next.
5 In the next dialog box, the name of the test suite class is AllTests; the

test cases FilePersistenceServicesTest and ObjectManagerTest are
included in the suite (see figure 4.4). This and the other defaults are
acceptable; click Finish.

Running a test suite is identical to running a test case: Make sure the test suite
class, in this case AllTests, is selected. Select Run→Run As→JUnit Test from the
main menu.

90 CHAPTER 4
Working with source code in Eclipse

4.2.6 Implementing the ObjectManager class

Now you’re prepared to implement the ObjectManager class. By using the Java
reflection API, this class will be able to create and modify objects of types deter-
mined dynamically at runtime. This functionality is briefly described here, but
for more information, please refer to Sun’s Reflection Tutorial at http://java.sun.
com/docs/books/tutorial/reflect/. The important point is that you understand the
overall functionality, not necessarily the details.

 You’ll begin by implementing the createObjectManager() factory method.
This method instantiates, initializes, and returns an ObjectManager object that
can manage value objects of a specific class, such as Star. Its single parameter is of
type Class. You need the Class to obtain information about the value object
type, such as its name and attributes, and, later, to instantiate the class.

 First, though, here are the private attributes of the ObjectManager class that
createObjectManager() is responsible for setting:

// ...
public class ObjectManager

Figure 4.4
Creating the test suite class.
The JUnit wizard automatically
locates and includes all the
test cases in the package.

Extending the persistence component 91

{
 Collection fieldMap = null;
 Class classType = null;
 String className = null;
 static Logger logger = Logger.getLogger(ObjectManager.class);

Here is the code for the ObjectManager factory method:
public static ObjectManager createObjectManager(Class type)
{
 ObjectManager om = new ObjectManager();
 om.classType = type;
 om.className = type.getName();
 om.setFieldMap();
 return om;
}

The first three lines are fairly straightforward: They instantiate ObjectManager
and save the class type and fully qualified class name in instance variables. (If
you call this method with Star.class, for example, getName() will return org.
eclipseguide.astronomy.Star.) The next line, which calls the setFieldMap()
method, does the most important work.

 In order to put the value object’s values in a vector or vice versa, ObjectMan-
ager’s save(), get(), and update() methods need to know the attributes of the
value object—specifically, their name and type. In an implementation that uses a
database, this method would also need to map the attributes (or fields) to the
corresponding database table’s columns. Here, where you are using a file-based
implementation, you only need to know what type each attribute is so you can per-
form appropriate conversions to and from strings.

 You obtain information about the value object’s attributes by using the Class
method getFields(), which returns an array of Fields; each Field in the array cor-
responds to one of the value object’s attributes. These are not guaranteed to be in
any particular order, so to make sure you read and write the attributes consistently,
you use the TreeMap class to store the information you obtain; using the attribute
name as the key ensures that the attribute information (which you store in an
object called a FieldMapEntry) is in alphabetical order.

 Here is the setFieldMap() method:
void setFieldMap()
{
 Field[] f = classType.getFields();
 TreeMap map = new TreeMap();
 for (int i = 0; i < f.length; i++)
 {
 FieldMapEntry entry = new FieldMapEntry();
 entry.attributeName = f[i].getName();

92 CHAPTER 4
Working with source code in Eclipse

 entry.attributeType = f[i].getType();
 map.put(entry.attributeName, entry);
 }
 fieldMap = map.values();
}

As you will have noted, FieldMapEntry is underlined, and there is a light bulb.
Click the light bulb and then select Create Class FieldMapEntry. In the new class
file, add the following to the attributes and then save:

String attributeName;
Class attributeType;

The save() method is straightforward: After making sure it’s been passed the right
kind of object, it calls the method object2Vector() to convert the object to a vector
and then uses FilePersistenceServices to write it to a file. Notice that you use
className as the filename:

public boolean save(Object o, int key)
{
 boolean success = false;
 if (!(classType.isInstance(o)))
 {
 return success;
 }

 Vector v = object2Vector(o);

 if (v.size() > 0)
 {
 success = FilePersistenceServices.write(className, key, v);
 }
 return success;
}

The heavy lifting is in the object2Vector() method, which uses the field map to
pull values out of the value object in order and put them in the vector:

Vector object2Vector(Object o)
{
 Vector v = new Vector();
 for (Iterator iter = fieldMap.iterator(); iter.hasNext();)
 {
 FieldMapEntry entry = (FieldMapEntry) iter.next();
 Field field;
 try
 {
 field = classType.getField(entry.attributeName);
 v.addElement(field.get(o));
 }
 catch (NoSuchFieldException e)

Extending the persistence component 93

 {
 }
 catch (IllegalAccessException e)
 {
 }
 }
 return v;
}

Note that you preserve the type of each object when you add it to the vector; it’s
the responsibility of FilePersistenceServices to perform whatever conversion is
needed in order to store it.

 The complementary method to save() is get(). It receives a vector from
FilePersistenceServices and uses it to populate an object that it instantiates on
the fly. Because every element of the vector is a string, you need to call a method,
typeMap(), to convert it to the appropriate type (which you determine from the
fieldMap):

public Object get(int key)
{
 Object o = null;
 try
 {
 Vector v = FilePersistenceServices.read(className, key);
 Field field = null;
 int size;
 if (v != null
 && (size = fieldMap.size()) == v.size()
 && size > 0)
 {
 o = classType.newInstance();
 Iterator vIter = v.iterator();
 Iterator mIter = fieldMap.iterator();
 for (int i = 0; i < size; i++)
 {
 FieldMapEntry entry = (FieldMapEntry) mIter.next();
 field = classType.getField(entry.attributeName);
 Class fieldType = field.getType();
 Object value = typeMap(fieldType, vIter.next());
 field.set(o, value);
 }
 }
 }
 catch (Exception e)
 {
 logger.warn(e);
 }
 return o;
}

94 CHAPTER 4
Working with source code in Eclipse

Here is the typeMap() method. To keep things simple, only a few data types are sup-
ported: String, double for all floating-point values, long for large integer values,
and integer for small integer values:

Object typeMap(Class type, Object val)
{
 Object o = null;
 String typeName = type.getName();
 String valString = val.toString();
 if (typeName.equals("java.lang.String"))
 {
 if (((String)valString).equals("null"))
 {
 o = null;
 }
 else
 {
 o = valString;
 }
 }
 else if (typeName.equals("long"))
 {
 o = Long.valueOf(valString);
 }
 else if (typeName.equals("int"))
 {
 o = Integer.valueOf(valString);
 }
 else if (typeName.equals("double"))
 {
 o = Double.valueOf(valString);
 }
 return o;
}

The remaining methods are not very interesting:

public boolean update(Object o, int key)
{
 boolean success = false;
 if (!(classType.isInstance(o)))
 {
 return success;
 }
 Vector v = object2Vector(o);
 if (v.size() > 0)
 {
 success = FilePersistenceServices.write(className, key, v);
 }
 return success;
}

Refactoring 95

 public boolean delete(int key)
 {
 return FilePersistenceServices.delete(className, key);
 }

 public boolean dropObjectTable()
 {
 return FilePersistenceServices.drop(className);
 }
}

What’s missing
In the interest of brevity, we’ve skipped over several things. First, no unit tests for
the helper methods in ObjectManager have been shown. Also, you may have noticed
that you included a log4j logger in the class; it would be a good idea to use this log-
ger to at least log some of the exceptions, for example.

 Also note that exception handling is spotty and not very robust; this isn’t a
good practice. There is a large general problem here: Many of the errors you
might get from the classloader, from the filesystem, and potentially from the
database, should not be passed to the client, but instead mapped to a set of your
own exceptions that represent a restatement of these more specific errors in per-
sistence terms. For example, rather than return a boolean error, FilePersistence-
Services.write() might instead throw one of several errors, such as Duplicate-
RecordException or StoreDoesNotExist, which your ObjectManager update()
method could pass up to the client.

 Other errors/exceptions (such as those thrown by the Field methods) are more
problematic, because they shouldn’t occur if your code is correct. This isn’t some-
thing you can explain to the client as a persistence-related failure; it’s a general
application failure, and it should probably be fatal. You should log the exception
information and return some sort of generic ObjectManager exception, such as
ClassMappingFailure, which is returned when the code can’t get or save an object
for reasons unrelated to the underlying data store.

 Dealing properly with exceptions in Java is an important topic, but it’s beyond
the scope of the basic design and coding issues we’re considering here.

4.3 Refactoring

Agile programming methods recommend that you build applications incremen-
tally, adding a small, well-defined set of features at a time. This approach has the
consequence that you are occasionally forced to reconsider previous design choices
to meet new requirements. Often, before implementing a new requirement, you

96 CHAPTER 4
Working with source code in Eclipse

need to change the structure of your code to accommodate the new features. At
the same time, you must be careful not to break the existing features. Changing
the structure of a program without changing the functionality is called refactoring.

 A number of development tools help make refactoring code painless and
foolproof enough that you can consider refactoring a valid and valuable tool in the
development process, rather than a penalty you must pay for lack of foresight.
You’ve seen one tool that supports refactoring indirectly: the exhaustive unit test-
ing provided by a test framework such as JUnit. Having a comprehensive set of
tests is a safety net that allows you to aggressively change your code, because it
ensures that you have the same functionality before and after the alterations.
Another important tool is automated refactoring. Eclipse has excellent support
for refactoring and currently provides over a dozen different types of common,
well-defined transformations. We’ll look at a couple in detail in this section; all
refactorings are covered with examples in Appendix A.

4.3.1 Renaming a class

One relatively simple refactoring is to change the names of methods, fields, classes,
or packages to better reflect a new design. Renaming a method, field, or class by
hand can be tedious when it is referenced in many other methods or classes, and
using an editor to find and replace all instances can be error-prone; because edi-
tors are not semantically aware, they can’t distinguish between like-named meth-
ods from different classes, for example. In the case of changing a package name,
not only must changes be made to the files in the package, and files in other
packages that reference it, but the directory structure must be changed as well.
As you’ll see, Eclipse’s Rename feature handles each of these tasks adroitly.

 In the previous section you developed an ObjectManager that directly uses
your file-based persistence class. Now, suppose you add another class like
ObjectManager that uses a database for persistence instead of files. If you call it
DatabaseObjectManager, then for consistency shouldn’t you also call your old
ObjectManager something like FileObjectManager? This approach also lets you
re-use the name ObjectManager for an abstract class (or, alternatively, an inter-
face) that specifies what methods concrete classes such as FileObjectManager and
DatabaseObjectManager must provide. Figure 4.5 gives an overview of this new
extended object model.

 The first refactoring you’ll do is changing the name of the ObjectManager
class. Notice that because factoring is specifically a JDT feature, Refactor appears
in the Eclipse main menu only if you are in the Java perspective. So, in the Java
perspective, do the following:

Refactoring 97

1 Select ObjectManager.java in the Package Explorer view. Right-click on it
and select Refactor→Rename from the context menu.

2 The Rename dialog box opens. Enter the new name: FileObjectManager.

The Rename dialog box also presents a number of options; one, allowing you to
change references, is selected by default. If you don’t leave this option checked,
Eclipse will change only the class name, the filename, and the names of any con-
structors (see figure 4.6). It will not change references to the class in this or any
other file. (The other options, to change references in Javadoc comments, com-
ments, and strings aren’t applicable for your code.)

 If you check the option to rename references and click OK, in addition to
changing the class name, filename, and constructor names, Eclipse will also
change references in this and any other files, including your unit tests in Object-
ManagerTest.java. Although this is a great feature, you don’t want that to hap-
pen now, because you’re going to create an abstract ObjectManager class and you
want the unit tests to use this abstract class; you want to hide specific concrete
classes from your unit tests and other client classes.

 To change all references in one file but not the other, you need to exercise
more precise control over what refactoring will do:

Figure 4.5 The Persistence component's class diagram. ObjectManager is an abstract class
created from the concrete FileObjectManager class.

98 CHAPTER 4
Working with source code in Eclipse

1 Click the Preview button to open a dialog box that allows you to view and
veto individual changes (see figure 4.7). The top section of the box contains
a list of the proposed changes with a checkbox for each change, so you
can choose which to accept. Two files (ObjectManager.java and Object-
ManagerTest.java) are listed, plus the proposed filename change.

2 Clicking on a file displays a side-by-side comparison of the file before and
after the proposed changes in the bottom section of the dialog box. You
only want to accept the changes to the ObjectManager class and filename,
so make sure the boxes next to ObjectManager.java and the Rename pro-
posal are both checked and the box next to ObjectManagerTest.java is not.

3 Click OK to perform the refactoring.

After refactoring, it’s important to review the results carefully, because only one
refactoring can be undone and this is possible only if no other changes are made
to the affected files. (Considering that Eclipse may need to make a large number
of changes to a large number of files, it’s somewhat surprising that it’s even pos-
sible to undo a refactoring.) Note that undoing a refactoring is slightly different
than a regular undo; you must select Refactor→Undo from the main menu (rather
than Edit→Undo).

 There are now problems with the unit tests, of course, as indicated by the red
X next to ObjectManagerTest in the Package Explorer; this is the case because
the tests refer to a now–nonexistent ObjectManager class—but you expected that
problem, and you’ll fix it soon.

Figure 4.6
Renaming a class. When
renaming an element such as
a class name, Eclipse can
automatically update all
references to the element in
the project.

Refactoring 99

4.3.2 Extracting an interface

Eclipse doesn’t offer an option to create an abstract class based on an existing
concrete class, but it does provide a refactoring that extracts an interface from
an existing class. This refactoring is close to what you want, so you’ll begin with
it. After making sure FileObjectManager is selected in the Package Explorer, do
the following:

1 Select Refactor→Extract Interface from the main menu.
2 Enter ObjectManager as the interface name.
3 Select the checkbox to change references to the class FileObjectManager

into references to the interface.
4 Eclipse presents a list of methods you can add to the interface—all the

public methods in the class. Click Select All on the right side of the screen
(see figure 4.8) and then click Preview.

Figure 4.7
The Rename
preview. Here you
can approve or veto
individual changes.

100 CHAPTER 4
Working with source code in Eclipse

Again, this approach gives you the opportunity to view individual changes and
veto them case by case. In particular, you might wonder what references to File-
ObjectManager Eclipse proposes to change to ObjectManager. It turns out that
Eclipse only wants to change the return value of the createObjectManager()
method to ObjectManager, which is what you want; click OK to accept the refactoring.

 Now you need to manually change the interface to an abstract class and add a
static factory method. (You need an abstract class rather than an interface
because you can’t have a static method in an interface.) This is the interface
Eclipse produced:

public interface ObjectManager
{
 boolean dropObjectTable();
 Object get(int key);
 boolean save(Object o, int key);
 boolean update(Object o, int key);
 boolean delete(int key);
}

And this is how you change it to an abstract class with a factory method:

public abstract class ObjectManager
{
 abstract boolean dropObjectTable();
 abstract Object get(int key);
 abstract boolean save(Object o, int key);

Figure 4.8 Extracting an interface from a class. Here you select the methods to
be included in the interface.

Refactoring 101

 abstract boolean update(Object o, int key);
 abstract boolean delete(int key);

 public static ObjectManager createObjectManager(Class type)
 {
 return FileObjectManager.createObjectManager(type);
 }
}

This always returns a FileObjectManager object, because that’s the only concrete
persistence class implemented so far. But you can imagine that as you implement
other types, such as a DatabaseObjectManager, there would be a switch mecha-
nism of some sort—perhaps based on a configuration file—that determines
which type to instantiate.

 The final change you need to make is to the FileObjectManager class; you
need to change from implementing an interface to extending an abstract class.
This is the corrected class declaration:

public class FileObjectManager extends ObjectManager

After you make this change to FileObjectManager.java and save it, ObjectMan-
agerTest.java should no longer be marked with a red X. You’re ready for the
moment of truth: It’s time to run the unit tests again. And, of course, they pass
with the big green JUnit stripe.

4.3.3 Future refactoring

As we’ve mentioned several times, in the future you may want to use a database
to provide persistence. What you’ve done here—making ObjectManager abstract
and providing a specialized FileObjectManager subclass that uses file-based per-
sistence—is a step in the right direction.

 A better alternative, however, would be to provide an abstract class or inter-
face for the persistence layer, perhaps called PersistenceServices, and leave
ObjectManager as a concrete class that uses this interface. This approach makes
for a simpler object model—which would become obvious when you began to
implement the database version of ObjectManager and realized it had a lot in
common with what the file-based version needs to do, especially if the databased
persistence object also represented data using vectors.

 Creating an abstract PersistenceServices class would require making the
methods in FilePersistenceServices nonstatic, because you can’t specify
abstract static methods in either an interface or an abstract class. Doing so also
lets you simplify your method signatures, because instead of passing the table or

102 CHAPTER 4
Working with source code in Eclipse

filename with each method call, the name can be an attribute of the Persistence-
Services object, which can be set when the object is instantiated.

 When PersistenceServices is subclassed, each concrete subclass can manage
whatever resources it needs in the manner that is most appropriate for the type of
persistence it’s using. Whereas a file-based implementation may want to open and
close files with each method call, a database implementation may want to keep
database connections open for the life of the object, because database connections
are expensive in terms of time and resources. If you expect to have a lot of objects,
you may want the objects to share a single connection or use a pool of connec-
tions. These are all details the ObjectManager layer doesn’t need to know about.

 Until you need to provide database-based persistence, correcting this design
flaw doesn’t provide any clear benefit—and, in fact, doing so may have a cost in
terms of performance and complexity. For now, make a note of it and defer mak-
ing the change until it’s necessary.

4.4 Summary

Eclipse provides many tools for working with source code. After importing source
code and extending the sample application you began in chapter 3, you’ve seen
one of the consequences of implementing features incrementally: the need to
change your design to accommodate the new features. At the same time, the
functionality must not change, because it must still support your old features. This
process of changing design without changing functionality is called refactoring.

 One of Eclipse’s greatest strengths is its support for refactoring, with over a
dozen types of automated refactorings available. We took a look at two here: renam-
ing a class and extracting an interface. In both cases, Eclipse can make semanti-
cally aware changes to all affected files in the project; but by using the refactoring
preview feature, you can review and select the changes it applies.

 In extending and refactoring the persistence project, you once again saw the
benefits of unit testing. Because your classes have unit tests to verify that they are
working, you can be confident when coding and fearless when refactoring. This
fearlessness extends to the design decisions you make: You can concentrate on
making decisions based on simplicity and short-term needs, because you know
you can easily and safely correct shortcomings as your project grows.

103

5Building with Ant

In this chapter…
■ What a formal build process can accomplish
■ Organizing a project for a formal build
■ A retrospective look at an old standard: Make
■ The new standard Java build tool: Ant
■ Ant projects, targets, tasks, and properties
■ A sample Ant build file

104 CHAPTER 5
Building with Ant

Although programming—writing and compiling code—is the most obvious part
of software development, it’s by no means the only part. Testing is important
too, as you’ve seen. But many more steps are necessary to deliver a finished
product: You also need to document, package, and deploy the software you
develop. Performing these steps by hand is tedious, repetitious, and error-prone.
This is a task begging to be automated.

5.1 The need for an official build process

You’ve gone through the cycle of testing and coding, testing and coding, and
you finally have something people can actually use. How do you deliver that
functionality?

 The next step is to identify in concrete terms what the product is. Is it an API?
An executable with a GUI? Is it packaged in a JAR file? Does it include documen-
tation? Sample code? Does all of this get burned onto a CD-ROM, or is it zipped
together for delivery over the Internet?

 Once you’ve made a decision, Eclipse makes it easy to perform any of these
steps. As soon you save your source code, everything is compiled; you can run
the unit tests, use the Javadoc wizard to create the documentation (assuming
that’s adequate for your audience), export your classes to a JAR, and put the
whole thing into a zip file. This process is fine if you want to informally give a
friend the latest version of the game you’ve been working on, but you wouldn’t
want to do this if you’re delivering a product to a client or to the public. There
are just too many things that can go wrong: forgetting to refresh the source tree,
forgetting to run unit tests, overlooking a failed test, selecting the wrong options
when generating the Javadoc, forgetting to copy over resource files, mistyping the
zip filename—the possible problems are endless. These issues become even more
complicated when more than one person is working on a project.

 One of the main purposes for a separate build process is reproducibility. Ide-
ally, you want to be able to type one command at a workstation; the machine
should then churn its hard disk for awhile and, in the end (if all goes well and
unit tests have run successfully), spit out a zip file or CD-ROM. Reducing human
intervention decreases the likelihood of error in the build process, and any
errors that do occur can be permanently corrected.

 Because it’s difficult to automate processes using a GUI, build procedures are
usually designed to be run at a command prompt. That way they can be kicked
off by a simple command or automatically at a specific time of day, using the
UNIX or Linux chron command or the Windows at command.

The need for an official build process 105

 One additional benefit of using an external, independent build process is that
it can free developers to use the development environment of their choice. This
may not seem like a critical requirement, but forcing developers—especially the
most experienced ones—to abandon the tools they’ve mastered can be detrimen-
tal to productivity.

5.1.1 Creating the build directory structure

Before we look at specific build tools, let’s consider the task of planning and
organizing the build process, using the file-based Persistence component you
began to develop in previous chapters as an example. Imagine that for some rea-
son you (or your management) have decided it’s a viable product. The first step
in formalizing the build process is to organize your files so a clear separation
exists between source files and other resources, temporary files, and deliverables.

Separating the source and build directories
When you created the Persistence project, you didn’t stop to consider the direc-
tory structure. You simply accepted the default that Eclipse gave you: The
project folder is equivalent to the source folder. This structure results in source
files, test classes, and compiled class files being mixed together:

C:\ECLIPSE\WORKSPACE\PERSISTENCE
|
+---org
 +---eclipseguide
 +---astronomy
 | *.java
 | *.class
 |
 +---persistence
 *.java
 *.class

Because there is no clean separation between source files and generated files,
deleting the generated files before starting a new build would require you to
delete certain files in certain directories. That’s not difficult, but it’s much easier
and more reliable to use a separate directory so you can blow away the whole
directory before starting a build—thus avoiding the possibility of outdated files
accidentally contaminating the build and causing mysterious problems.

 A better design than having the source files and class files mixed is to create
separate directories for each within the project folder, like this:

C:\ECLIPSE\WORKSPACE\PERSISTENCE
+---bin

106 CHAPTER 5
Building with Ant

¦ +---org
¦ +---eclipseguide
¦ +---astronomy
¦ ¦ *.class
¦ ¦
¦ +---persistence
¦ *.class
¦
+---src
 +---org
 +---eclipseguide
 +---astronomy
 ¦ *.java
 ¦
 +---persistence
 *.java

Eclipse is quite flexible about a project’s structure. If you had known from the
beginning that you needed a formal build process, you could have specified src
as the source directory when you created the project. Instead of accepting the
defaults and clicking Finish immediately after entering the project name, you
could’ve clicked Next to move to another dialog box that provides the option of
adding a new source folder; clicking Add Folder on the Source page lets you cre-
ate the new source folder name (see figure 5.1).

Figure 5.1
New source folder. You can
define a separate source
folder when creating a new
project, and Eclipse will
offer to create a separate
output folder.

The need for an official build process 107

But not to worry—you don’t have to go back all the way to square one and start
over. Agile development is all about incremental changes—taking things a step
at a time and never doing anything the hard way if you don’t have a good rea-
son. As you might expect by now, Eclipse makes this change a breeze. All you
need to do is create a new source folder (src) and move your source code into it.
Eclipse takes care of creating the new separate output folder (bin) and its subdi-
rectories. (In addition, when you build with Eclipse it puts all the class files in the
right place.)

 In the Java perspective, right-click on the project name (Persistence), select
New→Source Folder, and enter src as the folder name (see figure 5.2). Notice
the note at the top of the dialog box: To avoid overlapping, the existing project source
folder entry will be replaced and the output folder set to ‘Persistence/bin’. This is exactly
what you want, so click Finish. (If you don’t want to name the output folder bin—
if you want to name it build, for example—you can change the default later by
selecting Properties→Java Build Path→Source from the project’s context menu.)

 Now, to move the source files into the new src directory, right-click on the
top-level source directory (org), select Refactor→Move, and select the src direc-
tory under Persistence (see figure 5.3). (You can safely disregard the warning
that references to the default package will not be updated.) Or—even easier—
click on the org folder in the Package Explorer and drag-and-drop it onto the
src folder.

Figure 5.2
Adding a source folder to an
existing project. Eclipse
automatically creates a new
output directory.

108 CHAPTER 5
Building with Ant

Creating a directory for distributable files
Creating a separate output directory is a good start, but it’s not all there is to deliv-
ering software. A bunch of classes in a bunch of directories is not a product. You
need to decide which pieces to deliver to your clients and package them neatly in
a JAR file. Any good software product also requires documentation; because your
product is a software component intended for developers, it will probably be suf-
ficient to include just the Javadoc. (We’ve been lax about including Javadoc com-
ments in the code in the previous chapters, a situation you should think about
fixing—but for now, let’s leave it as an exercise for you, the reader.)

 Assume the Persistence component is the only part that is of general interest.
You need to separate the persistence classes from the astronomy classes and test
classes. Keeping in mind that you still need to build all the classes in order to test
the persistence classes, a good way to do that is to create yet another directory,
where you gather together just the pieces that make up the deliverable product.
You’ll call it dist (for distribution), and it will include the Persistence component
JAR file and the Javadoc:

C:\ECLIPSE\WORKSPACE\PERSISTENCE
+---bin
+---src
+---dist
 +---doc
 ¦ *.html
 +---lib
 persistence.jar

Eclipse automatically keeps the class files in the bin directory up to date as you
make changes to the Java source files in the src directory, but you need to do
everything beyond that. As mentioned, you can do this manually using Eclipse;
but for reliability and consistency, it’s much better to automate the process using
a build tool.

Figure 5.3
More refactoring:
moving the source tree
to the new src directory

Make: A retrospective 109

5.2 Make: A retrospective

Before we consider Ant, the de facto Java standard build tool, let’s take a quick
retrospective look at the traditional build tool—Make—to provide some perspec-
tive on the advantages offered by Ant. Many different flavors of Make are avail-
able, including various UNIX varieties, Gnu make, and Microsoft’s NMAKE (New
Make), but they are all more or less alike.

 Make accepts a make file that contains a list of targets, each followed by a
script that is run when the target is invoked. (By default, Make looks for a file
with a specific name, usually makefile, but you can usually explicitly specify a file
with another name on the command line.) A target and its commands are some-
times called rules.

 A target can have dependencies; these are other targets that must be evaluated
first. When Make runs, it finds the first target’s dependencies to see if they exist.
If the target is a file, and the dependency is a file, Make compares their times-
tamps; if the dependency is newer than the target, Make executes the rule to
bring the target up to date.

 This is the general format of a make file rule:

TARGET: dependencies ...
 commands
 ...

A small, simple make file to build an application from two C source files might
look like this:

myapp.exe: main.obj aux.obj
 link main.obj aux.obj -o myapp.exe

main.obj: main.c
 cc main.c

aux.obj: aux.c
 cc aux.c

If you aren’t familiar with C, don’t worry about the details, except to note that two
steps are normally required to create an executable program from C source code:
compiling source code into object files (the .obj files in this example) and linking
all the object files into a single executable file (the .exe file in this example).

 The first target, myapp.exe, is a rule that prescribes how to build the execut-
able by linking together two object files. By default, the first target in a make file
is the one Make executes. Make evaluates the chain of dependencies to make
sure everything in this chain is up to date. The first time you run this make file, it

110 CHAPTER 5
Building with Ant

first compiles aux.obj and main.obj, and then builds the application myapp.exe
by linking them.

 If you then change aux.c and run Make again, main.obj will still be up to date.
So, Make only compiles aux.obj before linking the new aux.obj and the existing
main.obj to make myapp.exe.

 In addition to a target that builds the application, you can add other targets
that perform special tasks, such as removing all the generated files in order to
force a complete rebuild. You might add these two targets at the end of the file:

CLEANALL: CLEAN
 del *.exe
 echo Deleted executable

CLEAN:
 del *.obj
 echo Deleted object files

Because they do not identify a real object to build, targets like these are usually
called pseudo-targets. These two targets are not included in the default target’s
chain of dependencies, so the only way to execute them is to explicitly specify
them on the command line when Make is started.

 Specifying CLEAN deletes the intermediate object files. Specifying CLEANALL
first deletes the intermediate object files because of its dependency on the CLEAN
target, and then deletes the executable—a dependency used in this way has an
effect similar to a method call.

 In addition to rules, a make file can also make variable assignments and
access environment variables. Because this section is only intended to provide an
overview of Make, we won’t cover these topics here.

 As this example demonstrates, Make provides several significant advantages
over a batch file or shell script:

■ Make reduces build time.—Make can evaluate which build targets are older
than their sources and build only those that are necessary to bring the build
targets up to date. When you’re working with a large system that may take
a long time to compile completely, this can be a huge timesaver.

■ Make is declarative.—You don’t need to tell it how to build, step by step.
Instead, you only specify what needs to be built as a set of related goals.
The order of execution, or flow of control, is not normally explicitly stated—
although you can use pseudo-targets to perform a sequence of commands
in order, when necessary.

Make: A retrospective 111

■ Make is extensible.—Commands are executed by the shell, so if you need any
functionality that shell commands don’t provide, you can write your own
utility programs—using C, for example.

Aside from some quirks (like the finicky distinction between spaces and tabs
that’s driven every Make user nuts at least once), Make is a perfectly serviceable
build tool. But the example was in C for a reason: to better demonstrate Make’s
ability to build incrementally. Using Make with Java doesn’t provide nearly as
much benefit in this regard, because most Java compilers automatically evaluate
dependencies. Suppose you have a Java class, HelloWorld:

// HelloWorld.java

public class HelloWorld
{
 public static void main(String[] args)
 {
 Printer printer = new Printer();
 printer.out("Hello, world");
 }
}

It uses this Java class, Printer:

// Printer.java

public class Printer
{
 void out(String s)
 {
 System.out.println(s);
 }
}

You can compile these two classes with a single command:

javac HelloWorld.java

The Java compiler, javac, evaluates HelloWorld.java and determines that it uses
Printer.java. If Printer.java hasn’t been compiled yet, or if Printer.java is newer
than Printer.class, javac compiles Printer.java. In other words, this single command
is essentially equivalent to the first part of the make file you saw earlier for the C
program—that is, the first three rules that specify how to build the application.

 Because incremental compilation is the biggest advantage Make offers over a
batch file or shell script, the ability of the Java compiler to determine dependen-
cies may seem to diminish the need for a Make utility in Java development. It
doesn’t eliminate the need for some type of build tool altogether, however,

112 CHAPTER 5
Building with Ant

because object types aren’t always known at compile time. Classes that contain a
collection cause problems because a collection can hold any type of object; for
example, a Company class may contain a Vector of Employee, but the compiler may
not be able to determine this at compile time. If you want reliable incremental
compilation, you still need some type of build utility.

 Finally, and most importantly, compilation isn’t the only thing build tools do.
As shown in the example, traditional make files typically also perform simple
housekeeping tasks such as deleting old files. Java projects often require addi-
tional steps, such as generating Javadocs and archiving packages.

5.3 The new Java standard: Ant

Using a traditional Make utility for Java has one serious drawback: These utilities
execute shell commands, which differ from platform to platform. This fact
defeats one of the main reasons for developing in Java: the ability to write once
and run anywhere. The obvious solution is to implement a tool comparable to
Make in Java. Ant, an open-source build tool from the Apache Software Founda-
tion, takes this approach. In addition to being a better cross-platform solution
than Make, Ant updates the syntax of the make files to use a standard declarative
format: XML. For these reasons, Ant has quickly become the standard build tool
for Java and has been tightly integrated with Eclipse; this integration includes a
special editor for working with Ant build scripts.

NOTE Up until now, because you’ve been using Eclipse to compile your Java
source code, you haven't needed a separate Java compiler. As noted pre-
viously, Eclipse includes its own special, incremental compiler; all you
need to add is a Java Runtime Environment (JRE).

To build using Ant, especially at a command prompt, you need to
have a complete Java Development Kit (JDK). Depending on your plat-
form, you may have a number of choices; but at a minimum you should
use JDK 1.3.x (preferably JDK 1.4.x), whether from Sun or another com-
pany. Make sure the JDK’s bin directory precedes any other directories
that contain a JRE in your PATH environment variable. Also make sure to
remove any references to old JDKs and JREs from your CLASSPATH envi-
ronment variable. You don’t need to include any of the JDK’s standard
directories or JARs in the classpath, because these are located automati-
cally based on the executables for the Java compiler (javac.exe in Win-
dows) and Java virtual machine (java.exe).

The new Java standard: Ant 113

5.3.1 A very brief introduction to XML

XML (Extensible Markup Language) has become the lingua franca for represent-
ing data of all kinds, so you’ve probably encountered it for one or another of its
many uses. If you haven’t used it, or if you’ve used it but aren’t familiar with some
of its terminology, this introduction will make it easier to follow the discussion of
Ant build files that follows.

 XML has its roots in SGML (Standard Generalized Markup Language), like
HTML (Hypertext Markup Language), which it resembles closely. Both use tags,
which are identifiers enclosed by angle brackets, like this:

<TITLE>

But there are a few important differences between HTML and XML. Because
HTML is designed to serve a limited purpose—describing how to display data as
a web page—it defines a standard set of tags. TITLE is a valid HTML tag, but
ORDER_NUMBER is not. XML, on the other hand, is open-ended. The application
you are using defines which tags are valid. In an application that uses XML to
represent data in an online store, ORDER_NUMBER may very well be a valid tag.

 A tag such as <TITLE> is called an opening tag; it marks the beginning of a
piece of data. Opening tags generally require a closing tag, which are tags having
the same name as the opening tag, preceded by a slash. The following defines
the title for a web page:

<TITLE>A very brief introduction to XML</TITLE>

HTML is pretty lax about syntax. Opening tags don’t always require closing tags.
For example, the <P> tag is supposed to mark the beginning of a paragraph, and
</P> should mark the end. In practice, however, you can simply use <P> to indi-
cate spacing between sections of text on a web page. This is absolutely not true
for XML—every opening tag must have a closing tag.

 Sometimes in HTML you can get away with improperly nesting opening and
closing tags; in XML you cannot. The following is invalid XML because of
improper nesting:

<I>This is not valid in XML!</I>

One last difference between HTML and XML is that XML is case sensitive. In
HTML, <TITLE> and <title> are both valid and equivalent. In XML, depending
on the application, they are both potentially valid, but are not equivalent.

114 CHAPTER 5
Building with Ant

Elements and attributes
An opening tag and a closing tag define an element. Every XML document must
have one root element (or document element) that encloses all other elements in
the document.

 The opening tag of each element may contain additional information about
the element in the form of name-value pairs called attributes. The value must
always be enclosed by quotation marks. Depending on the tag, certain attributes
may be required or may be optional. For example, Ant defines a <target> tag for
identifying build targets. The target tag accepts several attributes, such as
depends and description, but only the name attribute is required:

<target name="Compile" depends="Init">
 <!-- do compilation stuff here-->
</target>

(Notice that, as in HTML, you can insert comments beginning with <!-- and
ending with -->.)

 Sometimes elements don’t have any content. For example, the Ant tag to run a
Java program, <java>, allows you to specify all the information you need as
attributes. If you have a class file Hello.class, you can run it inside a target like this:

<target name="SayHello">
 <java classname="Hello.class"></java>
</target>

As a shortcut, empty elements like the one formed here with the <java> and
</java> tags can be written by ending the opening tag with /> and omitting the
closing tag. The following is equivalent to the previous example:

<target name="SayHello">
 <java classname="Hello.class"/>
</target>

Representing data with attributes and nested elements
Both attributes (such as the name attribute in the <target> tag) and nested ele-
ments (such as the text enclosed by the <TITLE> and </TITLE> tags) can be used
to specify data in XML. The choice is left up to the application. Sometimes the
application supports both formats and leaves the choice to the user. Ant some-
times provides attributes for selecting single options (like classname) and nested
elements for more complex things, such as sets of files, or combinations of paths
and individual files.

 The <java> tag, to take one example, lets you specify the classpath using
either an attribute or nested elements. You can use the classpath attribute to set

The new Java standard: Ant 115

the path to the predefined property java.class.path (which Ant sets to your
environment’s classpath) like this:

<target name="SayHello">
 <java classname="Hello.class" classpath="${java.class.path}"/>
</target>

Or, equivalently, you can use a nested classpath element:
<target name="SayHello">
 <java classname="Hello.class">
 <classpath path="${java.class.path}"/>
 </java>
</target>

Nested elements can in turn contain nested elements. For example, you can
replace the path attribute in the <classpath> tag with one or more nested
<pathelement> elements, as well as other elements:

<target name="SayHello">
 <java classname="Hello.class">
 <classpath>
 <pathelement path="${java.class.path}"/>
 <pathelement location="c:/junit/lib/junit.jar"/>
 </classpath>
 </java>
</target>

Sometimes Ant and other applications that use XML can be confusing because
they allow multiple options like this. Nested elements provide much more flexi-
bility than attributes, which are limited to a single value. When a single value is
all you need, it’s convenient to have the option to use the simpler syntax.

 Extending options this way, by using nested elements, exemplifies the main
problem with XML: its verbosity. Each bit of data that you include adds another
pair of opening and closing tags. Fortunately (or by necessity), most XML-based
applications provide tools that make the job of writing XML easier.

5.3.2 A simple Ant example

Before delving into the details of Ant and its build scripts, let’s look at the mechan-
ics of using Ant inside Eclipse with the Ant equivalent of “Hello, world.” The
same way that Make automatically assumes a make file’s name is makefile, Ant
assumes the name of the build script is build.xml. As with Make, you can over-
ride this default by specifying a file explicitly when you invoke Ant. However, it’s
most common to stick to this convention, especially because Eclipse also assumes
the build script’s name is build.xml and automatically opens files with this name
using the Ant script editor. (You can change this behavior by going to the Window→

116 CHAPTER 5
Building with Ant

Preferences→Workbench→File Associations dialog, but it’s not a good idea to
change it so that it opens all .xml files—in the future, you’ll encounter other
types of XML files that will benefit from other specialized editors. If you don’t
want to call your build script build.xml, enter each individual build script name
in the File Associations dialog box to use the Ant editor with it.)

 Create the build file by right-clicking on an existing project, such as your old
Hello project, and selecting New→File from the context menu. Enter build.xml
as the filename and click Done. If the editor does not automatically open
build.xml for you, then double-click on the build.xml file. Type in the following:

<?xml version="1.0"?>
<project name="Hello" default="print message">
 <target name="print message">
 <echo message="Hello from Ant!"/>
 </target>
</project>

The Ant editor isn’t as helpful as the Java editor, but it provides some basic con-
veniences, such as a code-completion feature you can invoke at any time by
pressing Ctrl-Space. Outside of a tag, it shows you available tags; inside of a tag,
it shows you the valid attributes for that tag. (The latter feature is especially use-
ful because the attribute names are not consistent from tag to tag.) The Ant edi-
tor also provides syntax highlighting and an outline view.

 To run this script, first save it, and then right-click on build.xml in the Pack-
age Explorer and select Run Ant from the context menu. Doing so opens a dia-
log box with the default target selected (see figure 5.4).

 Click the Run button at the bottom of the dialog box to produce the following
output in Eclipse’s Console view:

Buildfile: c:\eclipse\workspace\hello\build.xml

print message:
 [echo] Hello from Ant!
BUILD SUCCESSFUL
Total time: 2 seconds

Running Ant outside of Eclipse
In addition to running this Ant script inside Eclipse, you can use the build script
outside of Eclipse. To do so, you need to download and install the complete Ant
distribution from the Apache Software Foundation (the Ant project can be found
at http://ant.apache.org). If the current version is not identical (or at least com-
patible) with the one included with Eclipse, you need to either locate and down-
load the older version or upgrade the version in Eclipse.

The new Java standard: Ant 117

To upgrade the version of Ant that Eclipse uses, select Window→Preferences→
Ant→Runtime from the main Eclipse menu. Then, remove the classpaths for 1.5.2
ant.jar and optional.jar, and add the paths to the new versions of those JAR files.

 After downloading the appropriate zip file (or tar file) for your system and
decompressing it, add the bin directory to your path and the lib directory to your
classpath. If you installed Ant on Windows in the c:\jakarta-ant-1.5.2 directory,
you can add these directories to your path by typing the following commands at
a command prompt:

SET PATH=c:\jakarta-ant-1.5.2\bin;%PATH%
SET CLASSPATH=c:\jakarta-ant-1.5.2\lib;%CLASSPATH%

This change will affect only the current command-prompt window. A more per-
manent option is to modify these settings using the Systems applet in the Con-
trol Panel on Windows NT, 2000, or XP, or the autoexec.bat file on Windows 95, 98,
or ME; any command-prompt window you open afterward will be set properly

Figure 5.4
Running an Ant
file. The default
target is
automatically
selected.

118 CHAPTER 5
Building with Ant

for Ant. Having performed either of these steps, you can now change to the
c:\eclipse\workspace\Hello directory and run Ant by entering ant:

C:\eclipse\workspace\Hello>ant
Buildfile: build.xml

print message:
 [echo] Hello from Ant!

BUILD SUCCESSFUL
Total time: 2 seconds

If you are using Ant for your project’s official build but continue to use Eclipse’s
automatic compilation for your day-to-day work (which is pretty convenient), you
may want to occasionally run the ant build either inside Eclipse or, preferably, at
the command prompt. Doing so will ensure you haven’t broken the official build
and have included in the build any files you’ve recently created.

 Before you tackle building a larger build file, let’s first look in more detail at
the important tags and attributes that make up an Ant make file.

5.3.3 Projects

The required document element for a build file is the <project> tag, which must
specify a default target, and which optionally may also specify a name. In addition,
it may identify a base directory for the project. Its attributes appear in table 5.1.

The basedir attribute lets you specify either a relative or an absolute path; in either
case, this is resolved to an absolute path that other tags can use. Using a relative
path is preferable, however, because it makes the build more portable. Other devel-
opers’ machines and the official build machine don’t have to be set up just like
yours in order to run a build. The following example sets the basedir attribute to
the current path (.)—which is to say, the directory in which build.xml is located:

<project name="Hello" default="compile" basedir="."
 description="Hello, world build file">

Table 5.1 <project> tag attributes

Attribute Description Required?

default The default target to run Yes

name The name of the project No

basedir The base directory No

description A description of the project No

The new Java standard: Ant 119

The <project> tag can have the following nested elements:
■ <description>—You can include a description of the project as a nested

element instead of an attribute if you want it to extend over more than one
line. Having a description is highly recommended.

■ <target>—Described in the section 5.3.4.
■ <property>—Described in section 5.3.6.

5.3.4 Targets

A target is a container tag for a task or a group of related tasks and can be com-
pared (roughly) to a method. It can have the attributes listed in table 5.2.

Giving your main targets a description is a good idea because Ant provides a
-projecthelp option that lists all targets with description as main targets. This
option makes your build file self-documenting to a degree.

 Here’s an example:

<target name="compile" depends="init"
 description="Compile all sources">

5.3.5 Tasks

If a target can be compared to a method, a task can be compared to a statement
in that method. Ant provides numerous tasks—more than 100, if you count both
core and optional tasks.

 One of the great advantages of Ant is that it takes care of cross-platform issues
transparently. For example, in UNIX, a file path is written using forward slashes
(/) between directories and filenames, whereas in Windows, a backslash (\) is used.
In Ant, you can use either, and Ant will provide the correct format for the system
you are using. The same is true of classpaths. In UNIX, the different paths on a

Table 5.2 <target> tag attributes

Attribute Description Required?

name The name of the target Yes

depends List of dependencies No

if Execute only if the specified property is set No

unless Execute only if the specified property is not set No

description Description of the target No

120 CHAPTER 5
Building with Ant

classpath are separated by a colon, whereas in Windows a semicolon is used; you
can use either one, and leave the rest to Ant.

 The following are a few common tasks together with a basic set of their
attributes—enough to understand the examples and to begin writing your own
build files. For a complete description of all tasks and their options, refer to the
Ant documentation available at http://ant.apache.org/manual/index.html.

<buildnumber>
This task reads the build number from a file, sets the property build.number to
that number, and writes the value build.number+1 back to the file. It has the sin-
gle attribute listed in table 5.3.

Here’s an example:

<buildnumber file="buildnum.txt"/>

<copy>
This task copies a file or set of files. To copy a single file, use the file attribute.
To copy multiple files, use a nested <fileset> element instead.

 Normally, this task performs the copy only if the destination file doesn’t exist
or if the destination file is older than the source, but you can override this behav-
ior by setting the overwrite attribute to true. The <copy> task’s attributes are
listed in table 5.4.

Table 5.3 <buildnumber> task attribute

Attribute Description Required?

file File to read (default: build.number) No

Table 5.4 <copy> task attributes

Attribute Description Required?

file Source filename Yes, unless <fileset> is used instead

tofile Target filename Yes, unless todir is used instead

todir Destination directory Yes, if more than one file is being copied

overwrite Overwrite newer destination files No; default=false

includeEmptyDirs Copy empty directories No; default=true

failonerror Stop build if file not found No; default=true

verbose List files copied No; default=false

The new Java standard: Ant 121

A <fileset> nested element can be used to specify more than one file. (See sec-
tion 5.3.7.)

 Here’s an example:

<copy file="log4j.properties" todir="bin"/>

<delete>
This task deletes a file, a set of files, or a directory. To delete a single file, use the
file attribute. To delete multiple files, use a nested <fileset> element instead.
To delete a directory, use the directory attribute. The <delete> task’s attributes
are listed in table 5.5.

A <fileset> nested element can be used to specify more than one file. (See sec-
tion 5.3.7.)

 Here are two examples:

<delete file="ant.log"/>
<delete dir="temp"/>

<echo>
This task writes a message to System.out (the default), a file, a log, or a listener.
Its attributes are listed in table 5.6.

Table 5.5 <delete> task attributes

Attribute Description Required?

file File to delete Yes, unless dir or nested
<fileset> is used instead

dir Directory to delete Yes, unless file or nested
<fileset> is used instead

verbose List files deleted No; default=false

failonerror Stop build on error No; default=true

includeEmptyDirs Delete directories when using <fileset> No; default=false

Table 5.6 <echo> task attributes

Attribute Description Required?

message Text to write Yes, unless text is used as the element content

file Output file No

append Append to (rather than overwrite) file No; default=false

122 CHAPTER 5
Building with Ant

Here are some examples:

<echo message="Hello"/>
<echo>
 This is a message from Ant.
</echo>

<jar>
This task compresses a set of files into a JAR file. Options allowed are shown in
table 5.7.

Pattern lists are comma- or space-separated lists of file-matching patterns. <jar>
accepts the same nested elements as a <fileset> element. (See section 5.3.7.)

 Here are some examples:

<jar destfile="dist/persistence.jar"
 basedir="bin"
 includes=
 "org/eclipseguide/persistence/**, org/eclipseguide/astronomy/**"
 excludes="*Test*.class"/>

<jar destfile="dist/persistence.jar">
 <include name="**/*.class"/>
 <exclude name="**/*Test*"/>
</jar>

<java>
The java task invokes a class using a JVM. By default, the JVM is the same one
Ant is using. If you are calling a stable custom build utility, this can save time; but
if you are using it to run untested code, you risk crashing not just the bad code
but the build process as well. You can invoke a new JVM by setting the fork
option to true. The task’s attributes are listed in table 5.8.

Table 5.7 <jar> task attributes

Attribute Description Required?

destfile JAR filename Yes

basedir Base directory of files to be JARred No

includes Pattern list of files to be JARred No

excludes Pattern list of files to be excluded No

The new Java standard: Ant 123

The <java> task can use these nested elements:
■ <classpath>—Can be used instead of the classpath attribute
■ <arg>—Can be used to specify command-line arguments

Here are some examples:
<java classname="HelloWorld"/>
<java classname="Add" classpath="${basedir}/bin">
 <arg value="100"/>
 <arg value="200"/>
</java>

<javac>
This task compiles a Java file or set of files. It has a complex set of options (see
table 5.9), but it’s easier to use than you might expect, because many of the
options are provided to allow you to control compiler options. The Ant-specific
options are oriented toward working with directories, rather than a single Java
file, which makes building projects easier.

Table 5.8 <java> task attributes

Attribute Description Required?

classname Name of the class to run Yes, unless jar is specified instead

jar Name of the executable JAR to run Yes, unless classname is specified instead

classpath Classpath to use No

fork Runs the class or JAR with a new JVM No; default=false

failonerror Stop the build if an error occurs No; default=false

output Output file No

append Append or overwrite the default file No

Table 5.9 <javac> task attributes

Attribute Description Required?

srcdir Base of the source tree Yes, unless nested <src> is used instead

destdir Output directory No

includes Pattern list of files to compile No; default=include all .java files

excludes Pattern list of files to ignore No

classpath Classpath to use No

debug Include debug information No; default=false

124 CHAPTER 5
Building with Ant

By default, <javac> will not compile with debug information. This behavior is
usually appropriate for a build that will be used in a production environment.
You may wish to have a way of turning this option on or off, perhaps by having
separate targets for a debug build and a release build.

 <javac> can have these nested elements:
■ <classpath>—Can be used instead of the classpath attribute.
■ <jar>—Accepts the same nested elements as a <fileset> element. (See

section 5.3.7.)

Here are some examples:

<javac srcdir="src" destdir="bin"/>

<javac srcdir="${basedir}" destdir="bin"
 includes="org/eclipseguide/persistence/**"
 excludes="**/*Test*">
 <classpath>
 <pathelement path="${java.class.path}"/>
 <pathelement location=
 "D:/log4j/jakarta-log4j-1.2.8/dist/lib/log4j-1.2.8.jar"/>
 </classpath>
</javac>

<javadoc>
The <javadoc> task produces Javadoc from Java source files. The options for select-
ing which files to include should be familiar from the jar and java tasks. The prin-
cipal options specific to javadoc specify which Javadoc comments to include; see
table 5.10.

 The <javadoc> task can have these nested elements:
■ <fileset>—Can be used to select sets of files. Ant automatically adds **/

*.java to each set.
■ <packageset>—Can be used to select directories. The directory path is

assumed to correspond to the package name.
■ <classpath>—Can be used to set the classpath.

optimize Use optimization No; default=false

verbose Provide verbose output No

failonerror Stop the build if an error occurs No, default=true

Table 5.9 <javac> task attributes (continued)

Attribute Description Required?

The new Java standard: Ant 125

Here are some examples:

<javadoc destdir="doctest"
 sourcefiles=
 "src/org/eclipseguide/persistence/ObjectManager.java"/>

<javadoc destdir="doc"
 author="true"
 version="true"
 use="true"
 package="true">
 <fileset dir="${src}/org/eclipseguide/astronomy/">
 <include name="**/*.java"/>
 <exclude name="**/*Test*"/>
 </fileset>
 <classpath>
 <pathelement path="${java.class.path}"/>
 <pathelement location=
 "D:/log4j/jakarta-log4j-1.2.8/dist/lib/log4j-1.2.8.jar"/>
 </classpath>
</javadoc>

Table 5.10 <javadoc> task attributes

Attribute Description Required?

sourcepath Base of the source tree Yes, unless sourcefiles or
sourcepathref is specified instead

sourcepathref Reference to a path structure specifying
the base of the source tree

Yes, unless sourcepath or
sourcefiles is specified instead

sourcefiles Comma-separated list of source files Yes, unless sourcepath or
sourcepathref is specified instead

destdir Destination directory Yes, unless doclet has been specified

classpath Classpath No

public Show only public classes and members No

protected Show protected and public classes and
members

No; default=true

package Show package, protected, and public
classes and members

No

private Show all classes and members No

version Include @version information No

use Include @use information No

author Include @author information No

failonerror Stop the build process on error No; default=true

126 CHAPTER 5
Building with Ant

<mkdir>
This task creates a directory. It has the single attribute listed in table 5.11. If a
nested directory is specified, the parent directories are also created if necessary.

Here’s an example:

<mkdir dir="dist/doc"/>

<tstamp>
This task sets the properties DSTAMP, TSTAMP, and TODAY. A nested element, <format>,
can be used to change their formats using the patterns defined by the Java Sim-
pleDateFormat class, but by default, these formats are as follows:

 DSTAMP yyyyMMdd
 TSTAMP hhmm
 TODAY MMM dd yyyy

Please refer to the Ant documentation for more information about <tstamp> and
the <format> element.

5.3.6 Properties

Properties are name-value pairs you can use as symbolic constants inside a build
file. The value of a property is referenced by enclosing the name with ${ and }.
For example, if a property junit_home has been defined with the value D:/junit/
junit3.8.1, you can use this property to add the junit JAR file to the classpath
when you compile:

<javac srcdir="src" destdir="bin"
 classpath="${junit_home}/lib/junit.jar"/>

Properties can be defined several ways:
■ Predefined by Ant
■ On the Ant command line, using the -D option (for example, ant -Djunit_

home=D:/junit/junit3.8.1)
■ Inside a build file with the <property> task

Table 5.11 <mkdir> task attribute

Attribute Description Required?

dir The directory to create Yes

The new Java standard: Ant 127

The properties predefined by Ant include all the standard Java system proper-
ties, including the following:

■ java.class.path
■ os.name
■ os.version
■ user.name
■ user.home

Properties specific to Ant include:
■ ant.version
■ ant.file
■ ant.project.name

<property> and the name attribute
The most common way to set properties inside an Ant build file is to use the
<property> task with the name attribute and either the value attribute or the
location attribute. The value attribute is used to set a literal value:

<property name="jar_name" value="myapp.jar"/>
<property name="company" value="Acme Industrial Software Inc."/>

The location attribute is used to set an absolute path or filename. If you specify
a relative path, Ant converts it to an absolute path by assuming it is relative to the
basedir property and resolving it. In addition, file path separators are converted
to the appropriate character (/, \, or :) for the platform. For example:

<property name="junit_home" location="D:/junit/junit3.8.1"/>
<property name="src" location="src"/>

The first of these examples is left unchanged (except for the file path separa-
tors), because it represents an absolute path. The second example is expanded,
because it’s a relative path; assuming the basedir is c:\eclipse\workspace\persis-
tence, ${src} will evaluate to c:\eclipse\workspace\persistence\src.

<property> and the file attribute
You can use the file attribute to read properties from a file using the standard
Java properties file format. Assume that a file build.properties exists in the base
directory or on the classpath:

build.properties
junit_home=D:/junit/junit3.8.1
log4j_home=D:/log4j/jakarta-log4j-1.2.8

128 CHAPTER 5
Building with Ant

You can read these properties using the following tag:

<property file="build.properties"/>

<property> and the environment attribute
It’s also possible to read environment variables as properties by assigning a pre-
fix to the environment using the environment attribute The following assigns the
prefix myenv to the environment:

<property environment="myenv"/>

After this, you can access environment variables as properties with the prefix
myenv. For example, if JUNIT_HOME is defined in the environment, you can obtain
its value with ${myenv.JUNIT_HOME}.

 You should use this technique with caution, because it’s not supported on all
operating systems. Also, property names in Ant are case sensitive even if the
underlying operating system treats them as though they are case insensitive.
This behavior can cause problems for the unwary in versions of Windows that
preserve the case of environment variables but perform comparisons in a case-
insensitive way.

 For example, if a variable CLASSPATH already exists with the value c:\mylibs,
the following will not create a new variable classpath nor change the case of the
existing CLASSPATH:

set classpath=%classpath%;c:\anotherlib

Rather, this will update the existing CLASSPATH to c:\mylibs;c\anotherlib. To
ensure that the case is what you expect, you can unset the variable and redefine
it. The following lines at the command prompt or in a batch file force classpath
to lowercase:

set tmpvar=%classpath%
set classpath=
set classpath=%tmpvar%;c:\anotherlib

If you’re going to set environment variables for Ant using Windows batch files,
you should consider programming defensively in this way—especially if the
batch files will be used on other systems.

5.3.7 File sets and path structures

Because of the nature of Ant, many Ant tasks, such as <javac> and <jar>, require
that you specify paths and sets of files. Ant provides elements that allow you to
specify them with as much as detail as necessary, either by explicitly selecting

The new Java standard: Ant 129

files and directories or by using patterns to include or exclude groups of files or
directories. Because these elements don’t do anything, but rather refer to objects,
they are called types. You use only two types here: <fileset> and <classpath>.

<fileset>
As the name suggests, the <fileset> element allows you to select sets of files.
The only required attribute for a <fileset> is the base directory. If you don’t
specify anything else, all files in this directory and its subdirectories are
selected—with the exception of certain temporary files and files generated by
certain tools such as CVS. (Such files generally have unusual filenames that begin
or end with a tilde [~] or #, or have specific names and extensions such as CVS
and SCCS; it’s unlikely they will coincide with the typical files in a typical project.
For a complete list of the patterns Ant uses for its default excludes, please refer
to the Ant documentation.)

 You can also select or exclude files that match patterns you provide. Patterns
can include the following wildcards:

 ? Match any one character
 * Match zero or more characters
 ** Match zero or more directories

Consider these two common examples: You can use the pattern **/*.java with
the include attribute to include all Java source files, and you can use the pattern
**/*Test* with the exclude attribute to exclude test cases. Together, they specify
all Java files except test cases.

 The <fileset> element’s attributes are listed in table 5.12.

The <include> and <exclude> nested elements can be used in place of the
attributes includes and excludes, respectively.

Table 5.12 <fileset> element attributes

Attribute Description Required?

dir Base of the directory tree Yes

defaultexcludes Exclude common temporary and tool files No; default=true

includes Pattern list of files to include No

excludes Pattern list of files to exclude No

followsymlinks Use files specified by symbolic links No

130 CHAPTER 5
Building with Ant

 Here are some examples:

<fileset dir="src/org/eclipseguide/astronomy"
 includes="**/*.java"
 excludes="**/*Test*"/>

<fileset dir="src/org/eclipseguide/astronomy/">
 <include name="**/*.java"/>
 <exclude name="**/*Test*"/>
</fileset>

<classpath>
The <classpath> element allows you to specify which directories and JAR files an
application should search for the classes it needs to run (or, in the case of the
Java compiler, to compile). By default, Ant inherits the environment classpath,
but you often need to add additional directories or JAR files for specific applica-
tions such as JUnit. Tasks that use a classpath provide a classpath attribute, but
sometimes it’s more convenient to use a <classpath> nested element—especially
when the classpath is long. Paths can include multiple files or directories sepa-
rated by either a semicolon or a colon; Ant will convert the separator to the
appropriate character for the operating system.

 Table 5.13 lists the <classpath> element’s attributes.

One or more <pathelement> elements can be nested to build a longer classpath.
<pathelement> accepts the same attributes as <classpath>: path and location.

 In addition, a <fileset> can be used to specify files.
 Here are some examples:

<classpath path="bin"/>

<classpath>
 <pathelement path="${java.class.path}"/>
 <pathelement location="${junit_path}"/>
 <pathelement location="${log4j_path}"/>
</classpath>

Table 5.13 <classpath> element attributes

Attribute Description Required?

path Colon- or semicolon-delimited path No

location Single file or directory No

A sample Ant build 131

5.3.8 Additional Ant capabilities

The basics covered here should be enough to get you started working with Ant,
without being overwhelming. As you work more with Ant, you’ll probably come
across a situation—finding that you’re using the same <filelist> over and over,
perhaps—and wonder if there isn’t a more elegant solution than cut and paste.
In general, you’ll find that almost nothing is impossible with Ant.

 One way to reduce redundant code is to use references. Every element in Ant
can be assigned an ID, for example; and (depending on the types of elements
involved) you can use this ID to reference the element elsewhere in the build file.
For example, you can assign an identifier to a <classpath> using the id attribute:

<classpath id="common_path">
 <pathelement path="${java.class.path}"/>
 <pathelement location="${junit_path}"/>
 <pathelement location="${log4j_path}"/>
</classpath>

This classpath can then be referenced elsewhere using the refid attribute:

<javac srcdir="src" destdir="bin">
 <classpath refid="common_path"/>
</javac>

Ant provides tasks and types that let you filter files as you copy, replacing tokens
with text so you can include version information in your build—for example, by
using the <copy> task with a <filterset>. It lets you select files based on complex
criteria using selector types such as <contains>, <date>, and <size>. In the rare
instances that Ant doesn’t have a task to do something you need, you’ll find it’s
pretty easy to write your own Ant tasks.

5.4 A sample Ant build

These are the principal steps your build process needs to do:
■ Compile the application, placing the output in the bin directory
■ Run unit tests in the bin directory
■ Generate Javadoc, placing output in the dist/doc directory
■ Package the application’s class files in a JAR file in the dist directory

Because you may want to be able to do all these things individually, they will be
separate targets in the Ant build file. Normally, however, you’ll want to perform
all these steps at one time, so you also need a target that has these separate tar-
gets as dependencies.

132 CHAPTER 5
Building with Ant

 Often the separate targets have common setup requirements. You can create
an initialization target that performs this setup, which the separate targets can
then include as a dependency. Because this is a relatively simple example, all
you’ll do here is initialize the properties DSTAMP, TSTAMP, and TODAY to the current
date and time by calling the tstamp task, and print the date and time.

5.4.1 Creating the build file, build.xml

To create the build file, follow these steps:

1 Right-click on Persistence in the Package Explorer and select New→File.
2 Enter build.xml in the New File dialog box and click Finish.

Before you define any targets, let’s create some properties to use as symbolic con-
stants, instead of littering the build file with hard-coded values. This approach
will make the build file much easier to maintain. Here is the start of build.xml:

<?xml version="1.0"?>
<project name="Persistence" default="BuildAll" basedir=".">

 <description>
 Build file for persistence component,
 org.eclipseguide.persistence
 </description>

 <!-- Properties -->
 <property name="bin" location="bin"/>
 <property name="src" location="src"/>
 <property name="dist" location="dist"/>
 <property name="doc" location="${dist}/doc"/>
 <property name="jardir" location="${dist}/lib"/>
 <property name="jarfile" location="${jardir}/persistence.jar"/>
 <property name="logpropfile" value="log4j.properties"/>
 <property name="relpersistencepath" value=
 "org/eclipseguide/persistence"/>
 <property name="alltests" value=
 "org.eclipseguide.persistence.AllTests"/>
 <property name="junit_path" location=
 "D:/junit/junit3.8.1/junit.jar"/>
 <property name="log4j_path" location=
 "D:/log4j/jakarta-log4j-1.2.8/dist/lib/log4j-1.2.8.jar"/>

As you may expect, directories are generally specified using the location attribute,
which Ant expands to the absolute path based on the project’s base directory.
There is one exception, relpersistencepath, which is a relative path you’ll use in
a couple of different contexts, starting at different directories; to keep Ant from
turning it into an absolute path, you set it using the value attribute.

A sample Ant build 133

 Notice also that you provide several classpaths explicitly. This isn’t the best
way—because it means the build will only work if a machine is set up in a partic-
ular way—but it is the easiest. You may wonder if you can instead use the class-
path variables you set up in Eclipse. The answer is yes, it’s possible to do so using
a custom third-party Ant task; but that would mean you could only use this build
process inside Eclipse. (If you don’t mind this limitation, you can find the code
for a custom Ant task that does this by searching the eclipse.tools newsgroup.)

 Apart from this approach, especially when you build outside Eclipse at a com-
mand prompt, you can set these classpaths several other ways. The first, and
probably easiest, is to add them to the environment’s CLASSPATH variable using a
command as follows:

set CLASSPATH=%CLASSPATH%;D:/junit/junit3.8.1/junit.jar;D:/log4j/
➥ jakarta-log4j-1.2.8/dist/lib/log4j-1.2.8.jar

The second is to pass them in to Ant on the command line using the -D option
explicitly:

ant -Djunit_path=D:/junit/junit3.8.1/junit.jar -Dlog4j_path=
➥ D:/log4j/jakarta-log4j-1.2.8/dist/lib/log4j-1.2.8.jar

A bit better is to store these paths in their own environment variables. You can
read them inside the build file using the following property tags:

<property environment="env"/>
<property name="junit_path" value="${env.JUNIT_HOME}/lib"/>
<property name="log4j_path" value="${env.LOG4J_HOME}/lib"/>

Or pass them in like this in the command line:

ant -Djunit_path=%JUNIT_HOME%\lib -Dlog4j_path=%LOG4J_HOME%\lib

Finally, another option is to use a properties file. You might have a build.proper-
ties file that includes the following lines:

junit_path=D:/junit/junit3.8.1/junit.jar
log4j_path=D:/log4j/jakarta-log4j-1.2.8/dist/lib/log4j-1.2.8.jar

To use the values in this file, include the following tag in build.xml:

 <property file="build.properties"/>

After setting your properties, you include the main targets. You aren’t required
(as you are with Make) to put the default target first, but you will do so because
it’s a special target—it doesn’t do anything except link together the other targets
as a sequence of dependencies:

134 CHAPTER 5
Building with Ant

 !-- Main targets -->
 <target name="BuildAll"
 depends="-Init, -Prep, Compile, Test, Javadoc, Jar"
 description=
 "Complete rebuild. Calls Init, Compile, Test, Javadoc, Package">
 <echo message="Build complete."/>
 </target>

You may want to include the rest of the main targets in the order they are called
by BuildAll, in which case next the Compile target is next. Notice that by identi-
fying the source directory as org, you can compile everything in both the org.
eclipseguide.persistence and org.eclipseguide.astronomy packages, including
unit tests. This is also a good place to copy over any resources that are required—
in this case, the log4j.properties file:

 <target name="Compile"
 depends="-Init"
 description="Compile all Java classes">
 <!-- Compile org.* (${src}) -->
 <javac srcdir="${src}" destdir="${bin}">
 <classpath>
 <pathelement path="${java.class.path}"/>
 <pathelement location="${junit_path}"/>
 <pathelement location="${log4j_path}"/>
 </classpath>
 </javac>
 <!-- Copy log4j.properties files -->
 <copy file="${logpropfile}" todir="${bin}"/>
 <echo message="Compiled."/>
 </target>

The next target runs the unit tests. To run JUnit tests outside of Eclipse, you
need to use one of the JUnit TestRunner classes. Because you want to be able to
run this build file at a command prompt and log to a file, you need to use the
text-based TestRunner, junit.textui.TestRunner, rather than the fancy graphical
version. To launch it as a Java application, use Ant’s java task. To make sure it
doesn’t crash and bring down your build process with it, you need to specify that
it should use a separate JVM by setting the fork attribute to true. You must also
provide a few other values as nested values, including the name of the test class
TestRunner should run and the classpath it needs to use:

 <target name="Test"
 depends="-Init"
 description="Run JUnit tests">
 <!-- Run test suite using separate JVM -->
 <java fork="yes" classname="junit.textui.TestRunner"
 taskname="junit" failonerror="true">

A sample Ant build 135

 <arg value="${alltests}"/>
 <classpath>
 <pathelement path="${java.class.path}"/>
 <pathelement location="${bin}"/>
 <pathelement location="${log4j_path}"/>
 <pathelement location="${junit_path}"/>
 </classpath>
 </java>
 <echo message="Tested!"/>
 </target>

The Javadoc target includes the most complicated task you’re using here. First,
you specify the packagename and the Javadoc comments you want to include as
attributes in the javadoc tag. Then, because you want to exclude the unit tests,
you use a nested <fileset>, which in turn includes nested <include> and
<exclude> tags:

 <target name="Javadoc"
 depends="-Init"
 description="Create Javadoc">
 <!-- Javadoc, only for persistence classes -->
 <javadoc destdir="${doc}"
 author="true"
 version="true"
 use="true"
 package="true">
 <fileset dir="${src}/${relpersistencepath}">
 <include name="**/*.java"/>
 <exclude name="**/*Test*"/>
 </fileset>
 <classpath>
 <pathelement path="${java.class.path}"/>
 <pathelement location="${junit_path}"/>
 <pathelement location="${log4j_path}"/>
 </classpath>
 </javadoc>
 <echo message="Javadoc complete."/>
 </target>

The Jar target is fairly straightforward. As you did for the javadoc task, you use a
<fileset> here to specify that test files should be excluded. You also copy the
log4j.properties file, because users need it to use the Persistence package:

 <target name="Jar" depends="-Init">
 <!-- Jar for persistence classes -->
 <jar destfile="${jarfile}"
 basedir="${bin}"
 includes="${relpersistencepath}/*.class"
 excludes="**/*Test*"
 />

136 CHAPTER 5
Building with Ant

 <echo message="${bin}${relpersistencepath}/**"/>
 <!-- Copy log4j.properties to provide a sample -->
 <copy file="log4j.properties" todir="${dist}"/>
 <echo message="Packaging complete"/>
 </target>

Finally, you come to the internal targets: -Init and -Prep. (Their names begin
with a hyphen to discourage their being used directly. This isn’t a requirement,
but it’s a good practice because it makes your intentions explicit.) -Init prints
out the time. It is a dependency of all the main targets:

 <!-- Internal targets -->
 <target name="-Init"> <!-- private target, omit description-->
 <!-- Set timestamp and print time -->
 <tstamp/>
 <echo message="Build time: ${TODAY} ${TSTAMP}"/>
 </target>

-Prep is called only when you specify the BuildAll target. It deletes everything—
specifically, the bin and dist directories—from previous builds:

 <target name="-Prep">
 <!-- Delete output directories -->
 <delete dir="${bin}"/>
 <delete dir="${dist}"/>
 <delete dir="${jardir}"/>
 <!-- Create output directories -->
 <mkdir dir="${bin}"/>
 <mkdir dir="${dist}"/>
 <mkdir dir="${jardir}"/>
 </target>

</project>

5.4.2 Performing a build

Running the Ant build file is the same as before—right-click on build.xml and
select Run Ant. But now you have more options, because you have more targets.
Notice that the default target BuildAll is automatically selected, but you can
select other targets using the checkboxes provided. You could, for example,
select Compile and Javadoc (see figure 5.5).

 You can also set the order in which these targets are executed by clicking the
Order button to open the dialog box shown in figure 5.6. Click on a target and
click Up or Down to change its place in the build order. Once you’ve made these
selections, click OK and then click Run to start the build.

A sample Ant build 137

Figure 5.5
You can select
targets explicitly
in the Ant build
dialog box.

Figure 5.6
Order Targets dialog box.
Here you can modify the
order in which selected
targets are executed.

138 CHAPTER 5
Building with Ant

As before, the output appears in the Console view. Different types of messages
appear in different colors: Ant’s status messages appear in blue, <echo> messages
appear in orange, and errors—should there be any—appear in red.

 If you’ve been careful and not made assumptions that are true only for the
Eclipse environment (such as relying on classpath settings that are unique to your
Eclipse configuration), you should also be able to build at a command prompt.
To do this, type ant at a command prompt, as you did in the Hello example.

 You’ve been careful to include descriptions for the project and the main tar-
gets, so others will find it easier to use your build file because they can type ant
-projecthelp at the command prompt. Doing so produces the following output:

C:\eclipse\workspace\persistence>ant -projecthelp
Buildfile: build.xml

Build file for persistence component,
org.eclipseguide.persistence

Main targets:

 BuildAll Complete rebuild. Calls Init, Compile, Test, Javadoc, Pa
 Compile Compile all Java classes
 Javadoc Create Javadoc
 Test Run JUnit tests

Default target: BuildAll

There are some advantages to running the build file in Eclipse, however—especially
when you are first developing it, because of the way Ant and Eclipse are integrated.

5.4.3 Debugging the build

Although Eclipse and Ant don’t provide a debugger for Ant, they can help iden-
tify and correct the different types of errors that can occur. The first line of defense
against errors, of course, is the syntax highlighting provided by the editor. In the
Ant editor, comments are normally in red, text content in black, tag and attribute
names in blue, and attribute values in green. If things are not the color they
should be (such as several lines of code appearing in red), it’s obvious, and you
know something is wrong.

 The Ant editor’s syntax highlighting isn’t intended to identify all errors, how-
ever; aside from missing quotation marks and closing tags on comments, you
need to save your build file in order to have it parsed properly. After you save the
file, errors are identified in the outline view next to the Ant editor and in the
right margin of the editor. Clicking on the red box in the margin will take you to
the error (see figure 5.7).

A sample Ant build 139

Some errors aren’t identified until you run the build file. This can happen if you
use an invalid attribute, for example. Suppose you remember that <javac> uses
a superset of the attributes and nested elements <fileset> uses, and you write
the following:

<javac dir="${src}" destdir="${bin}"/>

Actually it’s almost true that <javac> has all the attributes <fileset> does; the
only difference is that <javac> uses srcdir where <fileset> uses <dir>. Running
the build file with this error causes the following problem to appear in the con-
sole window when Ant tries to execute this task:

[javac] BUILD FAILED: file:C:/eclipse/workspace/persistence/
build.xml:38: The <javac> task doesn't support the "dir" attribute.

Clicking on this error also results in Ant attempting to take you to the offending
code when you click on the text [javac]—this time successfully. (Clicking on any
of the task names in square brackets, not just those with errors, will take you to
the corresponding code in the build file.)

 Of course, once you’ve ironed out a few initial problems with the build pro-
cess and build file, build problems usually involve the source code. This is where
Ant’s integration with Eclipse really shines, because clicking on a compile error
takes you to the source file where the problem occurred.

 For example, assume you misspelled the variable name type as typo in the
parameter list of the createObjectManager() method in the FileObjectManager
class. When you compile, you get an unresolved symbol error (see figure 5.8).

Figure 5.7
The Ant editor
identifies a
syntax error in
the right margin.

140 CHAPTER 5
Building with Ant

Clicking on the error message in the console opens the corresponding source
file in the editor, with the cursor on the line where the error occurred.

5.5 Summary

Team development introduces new requirements to the development process.
One of these is the need to pull together the work of the different developers on
the team and produce an official build. Because this should be a reproducible
process, it isn’t enough to simply produce an ad hoc build. The traditional way of
performing an official build has been to use a command-line tool called Make;
different versions of this tool with a wide range of capabilities exist on different
platforms, but they all share a common format and slightly arcane syntax.

 You could certainly use Make to build Java products, but Java has slightly dif-
ferent requirements than traditional programming languages such as C/C++;
chief among them is that Java strives seriously to be a cross-platform language,
which makes Make less than ideal. Ant has been developed in large part to fill
this need. While remaining true to the spirit of Make, it also introduces several
new features, including XML syntax and extensibility using Java classes.

 Because of its integration with Eclipse, an Ant build process can be run both
inside Eclipse and outside at the command prompt. Thus the official process,
run at the command prompt, can be completely independent of Eclipse. This
ability provides the additional benefit that developers can potentially use any
development environment they are comfortable with.

Figure 5.8 Ant console output. Clicking on an error takes you to the
corresponding line in the source code.

Summary 141

 Although team development makes a build tool a requirement, Ant’s use isn’t
restricted to teams. Individuals can also benefit from using Ant, even in an envi-
ronment such as Eclipse that compiles code automatically and provides easy-to-
use wizards for producing Javadocs, JAR files, and zip files. A build process con-
sisting of multiple steps, however easy, can be tedious and consequently error-
prone, so spending a little time automating the process with Ant is an investment
worth considering.

143

6Source control with CVS

In this chapter…
■ The benefits of source control
■ Introduction to source control with CVS
■ Using CVS with Eclipse
■ The CVS workflow process: updating,

synchronizing, and committing
■ Creating and applying patches
■ Creating versions and branches

144 CHAPTER 6
Source control with CVS

Things that are nice to have when you’re working solo become must-haves when
you are working with other people. You’ve already seen this to an extent with
regard to building a product. You can get away with an informal build-and-
release process for a small project, but once a project becomes more complex
and includes other developers, you need to use a build tool to keep things under
control. The same considerations apply to the way you manage your source files.
When you are working independently on a small project, making an occasional
backup may be sufficient; but when more files and more people are involved, you
need a source control tool to manage and coordinate the changes to your source
code. In this chapter we’ll discuss Eclipse’s source control tool: Concurrent Ver-
sions System (CVS).

6.1 The need for source control

The need for source control becomes obvious as soon as two or more people
begin working together on a single set of files. If they don’t coordinate changes
somehow, eventually two people will make changes to the same source file at
nearly the same time, and one set of changes will get lost in the process—the last
one in wins. The most rudimentary type of source control is to simply coordinate
the team’s development efforts through communication: email, meetings, and
instant messaging.

 Source control systems (also called version control systems) cannot (and should not)
replace communication, but they help support and enhance the process of man-
aging source code in two major ways: by controlling access to the source code,
using a locking system to serialize access; and by keeping a history of the changes
made to every file, so that previous versions can be reconstructed and retrieved.

 The ability to preserve a file’s complete history is a remarkably powerful fea-
ture. If a new bug is discovered, you can trace back through different revisions to
see when the problem first appeared. Version control also allows you to enter
comments when you check in your code, so you can see what was changed in the
faulty revision. In addition, version control can help when you decide, after radi-
cally reworking a file, that you’ve gone down a wrong path, because you can eas-
ily revert to a previous revision. This functionality means it’s safer to make the
bold and aggressive changes that agile development sometimes requires.

 Version control also allows you to branch a project and develop different ver-
sions of it in parallel. By branching when you officially release a product, you can
fix bugs in the release branch while simultaneously continuing development on

The need for source control 145

the main branch. (Note that if you fix a bug in the release branch, you will gener-
ally need to fix it in the development tree as well.)

 It’s important to recognize that these benefits of version control can be advan-
tageous to anyone, not just developers working as part of a team. For instance,
those working on documentation can obtain a history of all changes that have
been made in any given period of time.

 Revision history is important, but the most critical job a source control system
performs is maintaining the integrity of the files. It does this by carefully control-
ling access and making sure changes don’t get lost. It can do so in one of two ways:

■ Pessimistic locking—Only one user can retrieve a modifiable copy of a file at
one time. Until that user relinquishes control by checking in the changed
code (or simply releasing the lock on the file), no one else can obtain a
modifiable copy. However, it is still possible to obtain a read-only version.

■ Optimistic locking—Users are free to obtain and modify files at any time.
When a file is checked back in to the repository, the version control soft-
ware makes sure conflicting changes haven’t been checked in by someone
else in the meantime. If the version control system can merge the changes
automatically, it does so; otherwise it notifies you that you must resolve the
conflict manually.

Pessimistic locking works against the goals of agile development, because it’s dif-
ficult to make pervasive changes quickly. Eclipse’s automatic refactoring feature
makes it trivial to rename a method, because it can identify and update every ref-
erence to it in a project—but this isn’t possible if the developer doesn’t have the
ability to modify all the necessary files.

 Furthermore, a strong sense of ownership goes against the principles of agile
programming, which encourages collective ownership of the code. Sharing own-
ership means sharing responsibility. If you see something wrong anywhere, you
fix it. If you find code that is unnecessarily complex, you simplify it. If more peo-
ple understand more of the code, bugs will find it harder to hide, and the overall
design will improve.

 As you might expect, given Eclipse’s other support for agile methodology, the
source control tool that comes integrated with Eclipse—CVS (Concurrent Ver-
sions System)—supports optimistic locking. By choosing Eclipse, you aren’t lim-
ited to this way of working, however. You can set up CVS to use pessimistic
locking, but doing so isn’t recommended. If you need this ability, version control
tools from other vendors that are designed to support strict code ownership are

146 CHAPTER 6
Source control with CVS

available, and they integrate equally seamlessly with Eclipse via plug-ins. Here,
in keeping with the agile approach that Eclipse encourages, you’ll use CVS.

 In this chapter, we assume you have access to a CVS server and, possibly, an
administrator who can tell you the information you need to connect. If you
don’t, see appendix B for instructions on setting up a CVS server.

6.2 Using CVS with Eclipse

Using CVS for source control, as previously discussed, has obvious benefits. The
only problem is that it can have a steep learning curve if you need to learn the
many commands and options necessary to use it via the command line. Using a
dedicated GUI client can make this curve easier to overcome, but the learning
process still adds enough complexity that it may not seem worth the trouble—
especially if you don’t have a clear need to use source control. Fortunately,
Eclipse’s seamless integration with CVS provides an efficient and fairly intuitive
interface. Simple operations are not much more complicated than saving or
opening files.

 Managing the contributions of multiple developers, however, is more compli-
cated. Eclipse makes CVS itself easy to use, but mastering the workflow process
necessary to coordinate your efforts with those of the other team members
requires more effort. Like learning to communicate effectively with your team
members, it’s just part of working together. In the sections that follow, we’ll look
at these two aspects of CVS—sharing a project and working together—using the
sample code developed in previous chapters.

6.2.1 Sharing a project with CVS

Several steps are necessary to add a project to a CVS repository using Eclipse.
The first step is to enter the information that Eclipse needs to connect to the CVS
repository. This information is stored as an object called a repository location. After
you create a repository location, you create a new module in CVS corresponding
to your project and, finally, add your projects files to that module.

Creating a repository location
To create a repository location, you need to know the name of your CVS server,
the path of the CVS repository on it, and the protocol it is using. You also must
have a valid username and password for the server or the CVS repository. Follow
these steps:

Using CVS with Eclipse 147

1 From the main menu, select Window→Open Perspective→Other.
2 A complete list of available perspectives appears. Select CVS Repository

Exploring and click OK. (Eclipse will remember this selection, and this per-
spective will appear directly in the Open Perspective menu in the future.)

3 In the CVS Repositories view, right-click and select New→Repository Location.
4 Enter the name of the CVS server, the repository path, the username,

and the password. Note that the repository path is the full path to where
the CVS repository is located (for example, /usr/local/repository).

5 Choose the protocol. If you are using pserver, you obviously need to
choose pserver. If you are using SSH, you need to choose extssh, which is
Eclipse’s built-in support for SSH1. (The third choice, ext, lets you use an
external program for remote access. You might need to use this option if
your SSH server supports only SSH2 and doesn’t provide backward com-
patibility for SSH1, or if you are using an entirely different protocol. To set
the external program to use, select Window→Preferences→Team→CVS→
Ext Connection Method.)

6 Unless you’ve changed the CVS port for some reason, leave Use Default Port
checked. Also leave Validate Connection on Finish checked. (See figure 6.1.)

7 Click Finish. The information you entered is saved, and Eclipse connects
to verify the information. Eclipse will notify you only if it is unable to con-
nect to the server; otherwise, if everything goes OK, you’ll see this repos-
itory location as a new entry in the CVS Repositories view.

Sharing the project
Once you’ve entered the parameters you need to connect to your repository, you
can add your project to the CVS repository by following these steps:

1 Change to the Java perspective, right-click on the project, and select
Team→Share Project.

2 In the Share Project with CVS Repository dialog box that appears, make
sure Use Existing Repository Location is checked and the repository
location you entered earlier for cvsserver is selected.

3 By default, the CVS module name is the same as the Eclipse project name.
If this is OK, click Finish.

If your project name has spaces, you may want to consider using something dif-
ferent for the repository name, especially if other users will be using CVS from

148 CHAPTER 6
Source control with CVS

the command line; otherwise they’ll have to remember to enclose the repository
name in quotes in commands. To use a different name, click Next instead of
clicking Finish in the first Share Project dialog box. In the following dialog,
check Use Specified Module Name, enter the new name, and click Finish.

NOTE If attempting to share the project causes an error, indicating CVS was
unable to create a directory, see the troubleshooting instructions in ap-
pendix B.

This step creates a module on the CVS server but doesn’t add any files to it.
Notice that Eclipse opens a CVS Synchronize view below the editor pane. This
view normally lets you compare your local version of files with those in the repos-
itory; but it isn’t a very interesting view when you first check in a project, because
none of the files are in the repository. You’ll see that it’s very useful later, however,
when there is something to compare.

 At this point, you may wish to set Eclipse to display additional CVS informa-
tion in the Package Explorer view, so you can see version and other information
for shared files (see figure 6.2). The main indicators are a golden cylindrical

Figure 6.1
Entering repository information.
You may need to obtain some of
this information from your CVS
server’s administrator.

Using CVS with Eclipse 149

object decorating the resource’s icon, indicating it’s under version control; a
greater-than sign indicating it has been changed locally; a version number; and
the file type.

 To display the CVS label decorators, follow these steps:

1 Select Windows→Preferences.
2 Go to Workbench→Label Decorations.
3 Check the CVS checkbox and click OK.

Another optional step you may want to take is to open a CVS console view so you
can see the commands Eclipse sends CVS and the responses it receives. This view
is useful if you know how to use CVS from the command line and want to see
what’s going on—especially when things go wrong. It can also be useful if you
want to learn how to use CVS commands. To open a CVS console, select Win-
dow→Show View→Other→CVS→CVS Console from the main menu. Doing so
opens another tabbed page in the existing console view.

Adding and committing files
It takes two steps to check a new file in to CVS:

1 Add the file to CVS.
2 Commit the file.

Adding the file doesn’t actually cause the file to appear in CVS; it just sends a
notification to CVS, which schedules the file for addition. The second step, com-
mitting the file, causes the file to appear in the CVS repository and be made
available to other users.

Figure 6.2
CVS label decorators indicate,
among other things, which files
and folders are under CVS
version control, their current
revision number, and whether
they have been changed locally.

150 CHAPTER 6
Source control with CVS

 Although you could go through your project file by file, adding individual
files (by right-clicking on the file and using Team→Add to Version Control), it’s
much easier to let Eclipse do this for you. Eclipse lets you commit the entire
project in (essentially) a single step, as follows:

1 Select the Persistence project.
2 Right-click and select Team→Commit.

Eclipse notifies you that a number of files have not yet been added to version
control and asks if you want to add them. You can review and modify the list of
files by clicking the Details button (see figure 6.3). Normally, Eclipse correctly
identifies the files that should be placed under source, including, in this case, the
Java source files in the src directory (that is, those in the org.eclipseguide.per-
sistence and org.eclipseguide.astronomy packages), the Ant build file
(build.xml), and the log4j configuration file (log4j.properties).

 Two of the files Eclipse automatically includes are Eclipse specific: .project
and .classpath. Whether you want to include them depends largely on the devel-
opment environment the other developers on your team are using. If you’ve been
careful to use classpath variables rather than hard-coded paths, sharing these files
is helpful for the Eclipse developers on your team. On the other hand, if few devel-
opers are using Eclipse, these files (and potentially other similar files from other
development environments) may be considered clutter by the rest of the team.

Figure 6.3 Adding files to version control. Clicking the Details button lets you
review and change the files that Eclipse adds to CVS.

Using CVS with Eclipse 151

You can tell CVS to ignore particular files by using a file called .cvsignore. Doing
so is simple: Right-click on the file and select Team→Add to .cvsignore. A dialog
appears that allows you to control what files should be ignored (see figure 6.4).
The easiest option to use is Resource(s) by Name, which adds the file you’ve spec-
ified. (The figure shows a spurious TestTable table that resulted from some pre-
vious experimentation.) When you’ve done this, a new file called .cvsignore is
generated, which you should add and commit to the CVS repository for this
project. Note that you will need to swap to the Resource perspective to be able to
see some files—for instance, those that start with a period (.), like .project.

 You’ll probably notice that Eclipse is smart enough to leave out the files and
directories built by the build process, including bin and dist, and all the .class
files and Javadoc files. After deciding what to do about .project and .classpath
(and unchecking them if you decide not to check them in), do the following:

1 Click OK to add and commit the files to the CVS repository.
2 Enter a comment as prompted. There’s usually not much to say the first

time around, so Initial revision will suffice.

In the future, when you make revisions and are prompted for a comment, you
should enter something more descriptive, of course—something that would pro-
vide a useful clue if something broke as a result of the changes you made, and
that would help whoever needs to compile release notes for the next build.

Checking a project out of CVS
Let’s change our point of view for a moment and see how a co-worker would obtain
the project you’ve just made available in CVS. (Although sharing source code
with team members is the most typical use of CVS, you might also do this if you
want to be able to work on the code on different machines or operating systems.)

Figure 6.4
Files added to the .cvsignore file will not be checked
into CVS. Here we selected a file by right-clicking on
it in the Package Explorer and choosing Team→Add
to .cvsignore.

152 CHAPTER 6
Source control with CVS

As before, the first step is to create a repository location; to do this, your co-worker
switches to the Repository perspective and then follows these steps:

1 Right-click in the CVS Repository view.
2 Select New→Repository Location from the context menu.
3 Enter the host name, repository path, username, password, and connec-

tion type and click Finish.

The new repository location appears in the Repository view. Expanding the Repos-
itory location displays several entries: HEAD, Branches, and Versions. You are
interested in HEAD—the main branch of development.

 You can use CVS to maintain different branches of a project. Doing so is often
necessary if you release a version of your project to the public, such as version 1.0.
As you begin to work on adding new features for version 2.0, the code is not stable
enough for release; so, if any serious bugs are discovered in version 1.0, they must
be made to the original 1.0 code. CVS allows you to create a separate branch,
starting with the original 1.0 code, so you can maintain this code separately from
the new development continuing with the main branch, HEAD.

 Versions differ from branches. A version is a snapshot of a branch at a given
point in time—in other words, it’s a particular set of file revisions. You need to
mark versions that relate to official releases, obviously, but it’s also convenient to
mark versions corresponding to project milestones such as feature completion
and beta releases. We’ll examine versions, branches, and revisions in more detail
in the sections that follow. To check out the current (and as it happens, only) Per-
sistence project, do the following:

1 Expand the HEAD entry in the repository. Doing so shows the CVSROOT
directory (CVS’s administration directory) and any modules that have
been checked in to this CVS repository, such as the Persistence project.

2 Select the Persistence module, right-click on it, and select Check Out As
from the context menu.

3 After a short pause while Eclipse talks to the CVS server, a dialog appears
that allows you to define what type of project you are going to check out.
This is useful if you added .project to .cvsignore, or if you’re checking out
a project you know is of type Java and want to be able to use the Java per-
spective. Select Java and then Java Project. Click Next.

4 Enter the name of the project you wish to check the files in to.
5 Click Finish.

Using CVS with Eclipse 153

These steps create a new Java project named Persistence and attempt to build it.

NOTE If the Eclipse .project wasn’t checked in and you chose Check Out as
Project, the project won’t be recognized automatically as a Java project;
you will need to open a Java perspective explicitly by selecting Window→
Open Perspective→Java. In addition to checking out the CVS code, doing
so will take you through the steps necessary to create a new Java project.

After checking out the project in a new Eclipse environment, the first problem
you’ll encounter is that the classpath variables the project requires (JUNIT and
LOG4J) have not been defined. Assuming log4j and JUnit are installed, this situa-
tion is easy to fix by selecting Windows→Preferences→Java→Classpath Variables
from the Eclipse main menu.

 Another problem, which is potentially harder to solve, is getting the Ant build
to work, because it has hard-coded paths for the required JAR files. Unless your
co-workers are working on the same platform with the JARs installed in the same
directories, either they need to edit the hard-coded paths (not a good solution,
because doing so will cause a conflict when the code is checked in to CVS later) or
you have to implement one of the solutions outlined in section 5.4.1, such as using
environment variables. You should do this in such a way as not to break the build
on other developers’ machines.

 Perhaps, after consultation with the team, you decide that one of the other
developers will implement a solution that checks to see if the environment vari-
ables JUNIT and LOG4J have been defined and, if so, uses those environment vari-
ables to set the paths—otherwise the original hard-coded values are used. This
may not be the best design (because it leaves arbitrary paths in the build file), but
it’s a reasonable compromise that ensures backward compatibility. You’ll leave
your co-worker to this task while you return to your own work.

6.2.2 Working with CVS

Once your files are under source control, you need to be more careful about how
you work with them. Because CVS doesn’t lock files to prevent changes by multi-
ple developers, the longer you go without synchronizing your local copies of files
with the latest versions on the CVS server, the more likely it is that you will find
conflicts between your changes and other people’s changes—and the harder
they will be to resolve.

154 CHAPTER 6
Source control with CVS

 How long is too long time depends on how many people are working on the
project and what they are doing. This timing is something you’ll learn from
experience, but a good start might be to get in sync at least once a day. Some-
times this frequency is inconvenient, because you also need to consider check-ins
from a task-oriented point of view.

 If you are adding a feature or doing a refactoring that takes significantly more
than a day, you may not want the intrusion of foreign code until you have your
own code working. In such a case, communication is especially important—you’ll
need to work out a plan with the other developers interested in changing the
same code.

 You should also contribute your changes to the repository as often as practi-
cal, so that others aren’t surprised by the extent of your changes. A good rule to
follow is to check in code that represents a sensible, integral change after making
sure it compiles and passes the unit tests.

A little more refactoring
In chapter 5 we mentioned a problem with the persistence model: FilePersis-
tenceServices should be a subclass of an abstract PersistenceServices class, and
in order to do this properly, you shouldn’t use static methods. First you’ll change
your static methods to instance methods as follows:

1 Remove the static modifier from the public read(), write(), update(),
delete(), and drop() methods in the FilePersistenceServices class.

2 Remove the filename parameter from these public methods.
3 Add a constructor to FilePersistenceServices that takes a filename and

saves it in an instance variable.
4 Make corresponding changes to the appropriate unit tests.
5 Make corresponding changes to the FileObjectManager class.

You need to make most of these changes manually or using the editor’s find and
replace feature, but Eclipse provides automated refactoring for changing the
method signatures in step 2—removing the filename parameter from the read(),
write(), update(), delete(), and drop() methods. Let’s take the read() method
as an example. It looks like this at first:

 public static Vector read(String fileName, int key)
 {
 // ...

Using CVS with Eclipse 155

After locating this method in the editor, right-click on the method name and
select Refactor→Change Method Signature; this option displays a list of parame-
ter types, names, and default values. (You may be prompted to save your files; if
so, click OK. You may want to click the Always Save All Modified Resources Auto-
matically Prior to Refactoring option to prevent this prompt in the future.)

 Here you are removing a parameter, so the default value doesn’t come into
play; but if you were adding a parameter, this default value would be used wher-
ever the method is called. For example, if you add a String parameter to a
method myMethod(), with a default value of null, all calls to myMethod() are replaced
with myMethod(null).

 To remove a parameter, follow these steps:

1 The first parameter you want to remove, filename, is already high-
lighted. Click Remove.

2 You can click Preview to view the results of the proposed change; you
should do this for the first method, to understand the changes it will
make.

3 In the next dialog box (whether you clicked Preview or not), Eclipse dis-
plays the problem resulting from the change: The filename parameter is
referenced in the method, so it’s left as an unresolved reference. This is
OK, because you’ll add an instance variable to the class to replace it.
Click Continue.

4 If you chose Preview, the next screen allows you to compare before and
after views of the affected files.

5 Once you are satisfied with the changes Eclipse proposes, click OK.

You probably noticed that you were not provided with an opportunity to remove the
static modifier from the method signature. As long as you’re here, do this manually.

 After these changes, the method signature for the read() method looks like this:

 public Vector read(int key)
 {
 // ...

If you examine the other files that call this method, such as FileObjectManager,
you’ll find that they have been changed appropriately. Repeat these steps for
each of the other four public methods: write(), update(), delete(), and drop().

 Next, to replace the filename parameter you removed from the methods, add
an instance variable to the class. Doing so will resolve the unresolved references:

156 CHAPTER 6
Source control with CVS

private String fileName = null;

Also add the following constructor to set the filename when the class is instantiated:

public FilePersistenceServices(String fileName)
{
 this.fileName = fileName;
}

After these changes, FilePersistenceServices should be in a consistent state
and no errors should remain flagged. This won’t be the case with FileObjectMan-
ager and FilePersistenceServicesTest, however, so next you need to make the
corresponding changes to these classes.

 Begin with the unit tests. First add an instance variable to the unit tests for the
FilePersistenceServicesTest class and initialize it by calling the constructor:

public class FilePersistenceServicesTest extends TestCase
{

 Vector v1, v2;
 String s1, s2;
 FilePersistenceServices ps =
 new FilePersistenceServices("TestTable");
 // ...

You also need to change all the calls to public methods to instance method calls.
You can do this most easily by using Eclipse’s search and replace feature. Locate
the first method call to FilePersistenceServices.drop() and double-click on the
class name. Be careful that you replace only calls to the public methods, because
you’ve left the utility methods static:

1 Select Edit→Find/Replace from the main menu.
2 The Find field is already filled in with FilePersistenceServices; fill in

the Replace With field with the instance name, ps.
3 Notice that the Direction setting is set to Forward by default. This is what

you want: You should change this text only in the code that follows and
not the code you just added.

4 Click Replace/Find. Doing so changes the currently highlighted instance
of FilePersistenceServices to ps and then locates the next instance.

5 Until you reach the end of the file, click Replace/Find wherever FilePer-
sistenceServices is used with public methods such as read() and
write(). Click Find wherever FilePersistenceServices is used to call
utility methods such as vector2String() and getKey()—doing so will
leave the text unchanged and locate the next instance.

Using CVS with Eclipse 157

These changes should correct all the problems you caused when you removed the
static modifier from FilePersistenceServices and make the red flags go away.
This is a good time to run the unit tests to verify that the changes are correct:

1 Select the FilePersistenceServicesTest class in either the editor or the
Package Explorer.

2 Select Run→Run As→JUnit Test from the main menu.

As usual, the green bar means everything’s OK.
 Next, you need to change the FileObjectManager class in a similar way. First,

add an instance variable for the FilePersistenceServices object, but initialize it to
null, because you’ll instantiate it only when you instantiate the FileObjectManager
class (you won’t know what the filename is until then). Here is the start of the class:

public class FileObjectManager extends ObjectManager
{
 static Logger logger
 = Logger.getLogger(FileObjectManager.class);
 Collection fieldMap = null;
 Class classType = null;
 String className = null;
 FilePersistenceServices ps = null;
 // ...

And here is the updated factory method (which you’re using in lieu of a constructor):

public static ObjectManager createObjectManager(Class type)
{
 FileObjectManager om = new FileObjectManager();
 om.classType = type;
 om.className = type.getName();
 om.setFieldMap();
 om.ps = new FilePersistenceServices(om.className);
 return om;
}

Now you need to change all the static calls with calls to the instance methods.
This is essentially the same thing you did with the unit tests; however, you don’t
have to worry about calls to static utility methods, so you can replace them all at
once. Again, locate the first call to a FilePersistenceServices method (which
should be a call to drop() in the dropObjectTable() method) and double-click on
FilePersistenceServices. Then follow these steps:

1 Select Edit→Find/Replace from the main menu.
2 Verify that the Find field is filled in with FilePersistenceServices. Enter

ps in the Replace With field.

158 CHAPTER 6
Source control with CVS

3 Click Replace All.
4 Right-click in the editor area and select Save. All the red error flags in

the project should be gone.

You should now be able to run and pass all the unit tests. You can run the unit
tests for FileObjectManager as described earlier, but before you check in these
changes, carry out a more comprehensive check by performing a complete build
and test using the Ant build file:

1 Right-click on build.xml in the Package Explorer and select Run Ant
from the context menu.

2 Make sure the BuildAll target is the only target selected in the Modify
Attributes and Launch dialog box and click Run.

Assuming everything builds and tests correctly, you’re ready to check your
changes in to CVS. Notice that the three files that have outgoing changes are
indicated by a greater-than sign (>).

Checking in to CVS
It’s generally not a good idea to make changes and simply check them in to CVS.
Obviously, you should first make sure your changes compile and pass the unit
test, as you’ve just done, but you should also make sure your changes don’t con-
flict with changes other people have made, and that your changes work together
with the other changes correctly.

 If you know there are no conflicting changes, Eclipse’s Update feature is the
easiest way to get up to date. CVS performs any necessary merges automatically
and silently. This is especially useful if it’s been a while since you made changes,
but others have been working—perhaps because you’ve been working on
another project or been away on vacation.

 If you update and some of the changes conflict—that is, if you’ve changed the
same lines in a file that someone else has changed—Eclipse combines the
changes in a single file that you need to edit by hand (a messy and error-prone
process). This situation isn’t exactly a disaster; but if there is a chance it will hap-
pen, it’s more convenient to perform the merge using Eclipse’s Synchronize Repos-
itory feature, because this feature takes advantage of Eclipse’s compare feature.

 We’ll examine merging shortly, but because you know from your communica-
tion with the other developers that the only other change is to the build file, you
can safely use Update now. Doing so provides little feedback if everything goes
smoothly, so take a moment to note the revision number of each file. At the out-

Using CVS with Eclipse 159

set, as indicated by the CVS label decorators in the Package Explorers, all of your
files are the initial version, revision 1.1. To update, select the project, right-click
on it, and select Team→Update.

 Suppose your co-worker, who was supposed to change the build file to sup-
port environment variables, has already checked in this change. The only indica-
tion that Eclipse provides that something was updated is the change in the
revision numbers. In this case, the revision number of the build.xml file has
changed from 1.1 to 1.2 (see figure 6.5). If there were many files and they had
varied revision numbers, it would be virtually impossible to tell what happened.

 To see what changes were made to the file, select build.xml, right-click on it,
and select Team→Show in Resource History. Doing so lists each revision together
with comments (see figure 6.6). If you want to know more specifically what
changes have been made, you can compare the current revision with previous
revisions by selecting Compare With→Local History from the file’s context menu.

Figure 6.5
The Package Explorer
after updating. Can you
spot what changed?

Figure 6.6
Build file resource
history. It makes
for excellent
reading when the
project’s done.

160 CHAPTER 6
Source control with CVS

Now that you have the combination of the latest code from the repository and
your changes, you should try to build and test once again by selecting the
build.xml file, right-clicking on it, and selecting Run Ant from the context menu.
Once the code passes this final test, you’re ready to check it in as follows:

1 Select the project, right-click on it, and select Team→Commit from the
context menu.

2 You are prompted to enter a comment. Do so, and then click OK.

Committing the project as a whole, as you do here, means you need to enter a com-
ment that applies to all the changed files. If you want to enter more specific com-
ments for each file, you must instead select each file individually and commit it.
Depending on the extent of the changes, this is sometimes more appropriate;
here, the changes are all directly related to making the FilePersistenceServices
class instantiable, so a single comment will do.

Resolving conflicts in an updated file
As mentioned previously, when you select the Update feature and changes have
been made to both the local version and the repository version, CVS does its best
to merge the two. When it finds a conflict in a line or group of lines, it includes
both versions and marks them to indicate which version came from which file,
using <<<<<<< filename to mark the start of the local version, ======= to mark
the end of the local version and the start of repository version, and >>>>>>>
revision to mark the end of the repository version.

 Let’s take a simple example using HelloWorld. Suppose the original 1.1 revi-
sion is as follows:

public class HelloWorld
{
 public static void main(String[] args)
 {
 System.out.println("Hello, world!");
 }

}

You change this code to use a separate method to print out the message as follows:

public class HelloWorld
{
 public static void main(String[] args)
 {
 say("Hello, world!");
 }

Using CVS with Eclipse 161

 public static void say(String msg)
 {
 System.out.println(msg);
 }
}

Before you can check in this code, someone else changes the hard-coded string
in the method call to a symbolic constant and checks the change in to CVS:

public class HelloWorld
{
 private static final String HELLO="Hello, world!";

 public static void main(String[] args)
 {
 System.out.println(HELLO);
 }

}

If you update before checking in your change, you’ll find that your local file is
changed as follows:

public class HelloWorld
{
 final private static String HELLO="Hello, world!";

 public static void main(String[] args)
 {
<<<<<<< HelloWorld.java
 say("Hello, world!");
 }

 public static void say(String msg)
 {
 System.out.println(msg);
=======
 System.out.println(HELLO);
>>>>>>> 1.2
 }
}

Notice that the line declaring the symbolic constant HELLO is not marked in any
way; because it didn’t conflict with any of the changes you made, it is added as is.
The remaining lines are more problematic. You clearly don’t want to replace
your call to System.out.println() with the 1.2 version—instead you should keep
your code but replace the hard-coded "Hello, world!" parameter with the sym-
bolic constant. Here is the merged code:

162 CHAPTER 6
Source control with CVS

public class HelloWorld
{
 final private static String HELLO = "Hello, world!";

 public static void main(String[] args)
 {
 say(HELLO);
 }

 public static void say(String msg)
 {
 System.out.println(msg);
 }
}

Once you’ve resolved the conflicts CVS identified and determined that your code
compiles and runs correctly, you can commit your changes as before, using
Team→Commit from the project’s context menu.

Synchronizing with the repository
Resolving minor conflicts in a file that CVS has merged is not usually a major
problem. But when the two versions have diverged significantly and conflicts
exist throughout the merged file, it can be virtually impossible to understand the
purpose of the changes. It’s much clearer to see a comparison of the two versions
of the file with each change in its original context. You can do that by using
Eclipse’s Synchronize with Repository feature:

1 Select the project in the Package Explorer and right-click on it.
2 Select Team→Synchronize with Repository from the context menu.

This option opens a new Synchronize view in the Java perspective, in the area
below the editor (if it’s not open already). This view presents a lot of information—
it’s a sort of Workbench on its own—so you may want to double-click on the title
bar to maximize it within the Eclipse Workbench. The upper-left corner of this
view shows a Structure Compare outline view displaying files that have changed.

 We’ll look at the alternatives later in this section. In the current example,
because the file has changed both in the repository and locally, Eclipse has auto-
matically selected incoming mode and decorated the filename in the list with a
double-headed red arrow. Double-clicking on the filename displays additional
information, including a Java Structure Compare section to the right of Struc-
ture Compare, showing changes at the Java element level, and below that, a com-
parison of the two different versions of the file (see figure 6.7).

 The Java Structure Compare section of this view shows that the HELLO attribute,
as indicated by the blue left-pointing arrow, is a new incoming change from the

Using CVS with Eclipse 163

repository. The red double-headed arrow next to the main() method indicates
conflicting changes.

 You can explore these changes in detail using the Java Source Compare sec-
tion below the structure comparisons and apply changes from one version to the
other. To add the HELLO attribute to the local version, hold the pointer over the
open box in the line linking the change on the right to its place on the left. A
button appears, along with hover text indicating that it will copy the current
change from right to left.

 When you use the Synchronize view in other contexts, the link between the
local code and the repository view may not contain an open box. (This would be
the case if Eclipse already considers the code merged, for example.) To copy the
change over in this case, select the change either by clicking on the code on the
right side of the screen or by clicking on the corresponding blue rectangle in the
right margin. (You can also click on the attribute name in the Java Structure Com-
pare section to select and display only that change in the comparison.) Then,

Figure 6.7 Synchronizing with the repository. Because of the amount of information, you may want
to double-click on the title bar to maximize this view within the Workbench.

164 CHAPTER 6
Source control with CVS

click on the Copy Current Change from Right to Left tool button in the Java
Source Compare title bar (see figure 6.8).

 To merge the changes and commit the merged file, follow these steps:

1 Copy the HELLO attribute using either method described earlier—for exam-
ple, select the code on the right and click the Copy Current Change from
Right to Left tool button.

2 Manually change the string in the main() method to the symbolic con-
stant HELLO.

3 These changes should result in the same merged code shown earlier as a
result of using the Update feature and editing by hand. Once you are sat-
isfied with the merge, right-click on the filename in the Structure Com-
pare section and select Mark as Merged to indicate that you’ve resolved
the conflict.

4 Commit the change by right-clicking on either the filename or the project
name and selecting Commit.

5 Enter a comment when prompted and click OK.

This example includes only a single file, but if there were more, you would repeat
the first three steps for each file until all conflicts were resolved. You could then
either commit each file individually by right-clicking on each filename, if you
wanted to enter comment for each file, or you could commit the project or the
individual packages by right-clicking on the project or package name if a single
comment is appropriate for the project or package.

Figure 6.8 Java Source Compare. You can copy changes from the repository file on the right
to the local copy of the file either by clicking on the links or by using the tool button as shown.

Using CVS with Eclipse 165

TIP What happens if you use Update and realize you shouldn’t have, be-
cause there are many unexpected incoming changes? In Eclipse, if you
make a mistake, you can usually press Ctrl-Z to undo the change. How-
ever, generally speaking, you need to undo carefully when interacting
with CVS, because Eclipse often issues commands to CVS behind the
scenes that have an immediate and permanent effect, and these can not
be undone.

If you update and then discover to your regret that CVS has made a
mess of your code, you can still undo the change by selecting the file in
the editor and clicking Undo. Just be aware that Eclipse treats the undo
as part of your manual merge with the latest CVS revision, rather than a re-
version to the previous local version. When you choose Synchronize with
Repository at this point, there will be some minor differences in the op-
tions you are given, but you will still be able to merge as described earlier.

If you are at all unsure about what an update might do, you should
make a backup of your project beforehand so you can return to your
known working project. Sometimes it pays to be cautious.

Synchronization modes: incoming, outgoing, incoming/outgoing
As you’ve just seen, when you select Synchronize with Repository from the Team
menu and there are changes in the repository, Eclipse opens the Synchronize
view in incoming mode. This mode is one way of filtering the files that are
shown; altogether there are three modes:

■ Incoming.—Lists only the files that have changed in the repository since you
last synchronized your local code with the repository (by explicitly synchro-
nizing, committing, or updating your code)

■ Outgoing.—Lists only files you have changed since you last synchronized
■ Incoming/outgoing.—List files that have changed either in the repository or

locally since you last synchronized with the repository

The mode in which the Synchronize view starts depends on whether you have
outgoing changes and whether there are incoming changes from the repository.
If there are incoming changes, regardless of whether there are outgoing
changes, the view starts in incoming mode. If there are only outgoing changes, it
starts in outgoing mode. This is in keeping with the recommended CVS work-
flow: After making changes, you should bring your code up to date with the lat-
est changes from the repository and then build and test with those changes
before checking in your code.

166 CHAPTER 6
Source control with CVS

 To illustrate, suppose a project includes four files: ClassA, ClassB, ClassC, and
ClassD. One morning, you start by updating your local source and begin working
on the files. At the same time, another developer works on the same set of files.
You make changes to ClassA, the other developer makes changes to ClassB, and
you both make changes to ClassC. Nobody makes changes to ClassD. At the end of
the day, you select Team→Synchronize with Repository from the project’s context
menu, after the other developer has checked in his changes. Because there are
changes in the repository, the Synchronize view starts in incoming mode and shows
only the files the other developer changed: ClassB and ClassC (see figure 6.9).

 Incoming mode lets you examine these files one by one, so you can combine
them with your code. Even though there is no conflict, you may wish to double-
click on ClassB to examine the changes before accepting them. If everything
looks OK, you can right-click on the filename and select Update from Repository
to accept the changes.

 The second file, ClassC, has one or more changes that conflict with your
code, so you can’t simply accept it by selecting Update from Repository—this
selection is grayed out in the context menu. If, after comparing it to your ver-
sion, you decide you want to discard your changes and replace your local version
with the version from the repository (perhaps because the changes the other
developer made supercede your changes), you can do so by right-clicking on the
filename and selecting Override and Update from the context menu.

 Another possibility in the case of a conflict would be to discard the other devel-
oper’s changes. (Generally you want to make sure the other developer knows you
are doing this, of course.) To do so, right-click on the filename and select Mark
as Merged from the context menu—this option identifies your unchanged local
version as the merged version even though you haven’t made any changes. Once
all conflicts have been resolved, you can commit your changes.

Figure 6.9
Synchronization
incoming mode, one of
four viewing modes,
shows only files that
have changed in the
repository.

Using CVS with Eclipse 167

Whereas incoming mode is well suited to resolving conflicts before checking in
code, outgoing mode is useful for reviewing your changes as a whole (perhaps
for preparing release notes) because it lists all the files you’ve changed and lets
you compare them to the version in the repository. In figure 6.10, the outgoing
view shows ClassA and ClassC.

 Incoming and outgoing modes provide filtering, so you can deal with smaller
sets of files. The incoming/outgoing mode, in contrast, provides an overview of
every file that has changed in a project. Because it shows all the files that have
changed, either locally or in the repository, you can use it in place of either
incoming or outgoing mode (see figure 6.11).

Creating and applying a patch
Sometimes a CVS server is set to allow certain users (such as anonymous users)
read-only privileges. This is true of many public CVS servers, such as the one for
Eclipse (which you can access using the repository location: :pserver:anony-
mous@dev.eclipse.org:/home/eclipse) and the projects on sourceforge.net.

 To send changes to another developer, perhaps one who has commit privi-
lege, you can use Eclipse to create a patch—a file that lists the changes that have

Figure 6.10
Outgoing mode shows
files you have changed
locally.

Figure 6.11
Incoming/outgoing mode
shows every file that has
changed.

168 CHAPTER 6
Source control with CVS

been made to the source code, including multiple files and packages. The devel-
oper who receives the file can then use Eclipse or some other tool to review and
apply the changes.

 Suppose, for example, that another team in your company is using your Per-
sistence component and extends it to work with a database. They don’t want to
maintain a separate branch of your code; for one thing, doing so would make it
harder for them to use new versions of the component, because they would have
to merge each time. Assuming the changes they make are reasonable, it’s in both
your interest and theirs for them to contribute their changes to your code.

 In addition to creating a new DatabaseObjectManager class, they also change
the ObjectManager class, adding some symbolic constants, a static method to
select the persistence type, and a switch statement in the factory method that
selects the appropriate concrete class:

public abstract class ObjectManager
{
 public final static int FILE_PERSISTENCE = 1;
 public final static int DB_PERSISTENCE = 2;
 private static int persistenceType = FILE_PERSISTENCE;

 // abstract methods ...

 public static void setPersistenceType(int persistenceType)
 {
 ObjectManager.persistenceType = persistenceType;
 }

 public static ObjectManager createObjectManager(Class type)
 {
 ObjectManager om = null;
 switch (persistenceType)
 {
 case FILE_PERSISTENCE :
 om = FileObjectManager.createObjectManager(type);
 break;
 case DB_PERSISTENCE :
 // om = DatabaseObjectManager.createObjectManager(type);
 break;
 }
 return om;
 }
}

After making these changes, they create a patch file as follows:

1 Right-click on the project name and select Team→Create Patch from the
context menu.

Using CVS with Eclipse 169

2 Choose a place to save the patch. The choices are the clipboard, the file-
system, and the workspace. Assuming they choose the filesystem, they
enter a filename such as C:\patch.txt.

3 Clicking Next allows them to change the options; but the defaults are
OK, so they click Finish.

This resulting patch file looks similar to the file the CVS Update command pro-
duces when it merges two files with conflicting changes, because the CVS diff
utility is used in both cases. The difference is that the patch file contains the
results of comparing multiple files and information about the files, including
path, timestamps, and version. Here is the start of the patch information for
ObjectManager:

Index: src/org/eclipseguide/persistence/ObjectManager.java
===
RCS file: /usr/local/repository/src/org/eclipseguide/
→persistence/ObjectManager.java,v
retrieving revision 1.1
diff -u -r1.1 ObjectManager.java
--- src/org/eclipseguide/persistence/ObjectManager.java 6 Apr
→2003 04:47:18 -0000 1.1
+++ src/org/eclipseguide/persistence/ObjectManager.java 6 Apr
→2003 12:43:37 -0000
@@ -1,6 +1,7 @@
 package .org.eclipseguide.persistence;

 import java.util.Collection;
+import java.util.Properties;

 /**
 * Enter one sentence class summary
@@ -11,18 +12,34 @@
 */
 public abstract class ObjectManager
 {
- public final static int FILE_PERSISTENCE = 1;
- public final static int DB_PERSISTENCE = 2;
-

An important feature of the patch file is that it is a plain text file, so it can simply
be sent to you in an email, for example. When you receive it, you can save it to
your filesystem and apply the changes to your local copy as follows:

1 Right-click on the project name and select Team→Apply Patch from the
context menu.

2 Type in the filename or use Browse to locate the patch file. Click Next.

170 CHAPTER 6
Source control with CVS

3 The next dialog box lets you identify the changes in the patch and
whether they can be successfully applied. You can also examine the
change by double-clicking on the line ranges (see figure 6.12).

Patches work best if the contributor started out with the same version of the files
you currently have on your local system. If you have also made changes to the
same files in the meantime, you may encounter conflicts that CVS cannot resolve.
You will need to merge those sections of code manually.

6.2.3 Versions and branches

CVS is not limited to storing a history of revisions for each file. If it were, it would
be awkward to retrieve the code from a particular point in time. Some files
change more quickly than others, so at any given time, different files are likely to
have different revision numbers. (It’s possible to retrieve files from CVS based on
their date, but Eclipse doesn’t permit this.) A good way to manage this situation
is to assign a version label to the project, which is like taking a snapshot of the

Figure 6.12 Applying a patch from the filesystem. Changes can be reviewed and individually
accepted or vetoed.

Using CVS with Eclipse 171

project at that point in time. You can later retrieve the project using the version
label to return to that point in time.

 CVS can also store multiple histories for each file. This feature allows you to
branch the project—that is, pursue more than one line of development at a time.
As mentioned previously, one branch might be used to provide maintenance
(such as bug fixes) for a released version of a product while development for the
next version continues on the head branch.

Adding a version label
Adding a version label to a project associates the revision number of each partic-
ular file with a single project-level label. When you retrieve a project using a ver-
sion label, CVS provides you with the revision of each file that was current when
the version was created.

 You should consider tagging a project with a version label at all significant
development milestones, such as a beta or an official release, or before any dras-
tic change is undertaken. Suppose, as you continue with your efforts to make a
product out of the Persistence component, you decide that the astronomy pack-
age you included as part of the project shouldn’t really be included. It’s easy
enough to delete, but before you do that, you’ll give the current source code a
version label. If you later decide it was a mistake to delete the package, you can
retrieve the old complete version.

 To give a project a version label, first make sure your local copy of the source
code has been synchronized with the repository and all your changes have been
committed. Then, follow these steps:

1 Right-click on the project name and select Team→Tag as Version from
the context menu.

2 Enter a label, such as OriginalProject (see figure 6.13). There are restric-
tion on the name: It must start with a letter and cannot contain single
quotes ('), back ticks (`), dollar signs ($), colons (:), semicolons (;), at signs
(@), or pipe symbols (|).

3 Click OK.

Now you can safely delete the astronomy project by selecting the astronomy pack-
age and clicking Delete, knowing you can easily return to this point in the project’s
history if necessary. Once you do this, you’ll discover that the ObjectManagerTest
class has numerous problems because it refers to the Star class from the package
you deleted. One solution is to create a new test class (omitted here in the interest
of brevity) and change all references in ObjectManagerTest to the new class and its

172 CHAPTER 6
Source control with CVS

attributes. (If you choose to undertake this as an exercise, remember that your new
class will need to implement an equal() method so JUnit can compare the two
instances of the class correctly.) Once you’ve fixed all the compilation problems
resulting from this surgery and the unit tests succeed, you can synchronize and
commit your changes, including the addition of the new test class file.

Retrieving a version
You can retrieve a version two ways: initially, by checking out the project from
CVS using the Repository view; or, when you already have the project checked
out, by selecting Replace With→Another Branch or Version from the project’s
context menu. You’ll use the latter here, but in either case, you are presented with
a tree showing the branches and versions available in the Persistence project. Fol-
low these steps:

1 Right-click on the project name and select Replace With→Another Branch
or Version from the project’s context menu.

2 Click on the plus sign next to Versions to list all available versions, which
in this case is only OriginalProject (see figure 6.14).

3 Select OriginalProject and click OK.

After retrieving the OriginalProject version of the project, you’ll find that the
astronomy package has been restored and any new files you’ve added to the main
branch since tagging this version are gone. You can return to the current version
by repeating these steps, selecting HEAD instead of the OriginalProject version.

Creating and using a branch
A branch is similar to a version, with the important difference that you can make
changes to the files associated with a branch and commit the changes. The changes
you make will, of course, appear only to you and anybody else working with that
branch. Once you’ve started or retrieved a branch in your workspace, you do not
have to do anything special; Eclipse knows which branch you are working on.

Figure 6.13
Tagging a project with a version label
provides a snapshot of a project’s
files at the current point in time.

Using CVS with Eclipse 173

When you create a branch, the starting point is the current version in your work-
space. This can be either the head, if you intend to pursue a new line of develop-
ment, or a previously tagged version. Suppose that even though the main
Persistence project will not include the astronomy classes, you want to develop
another application that does include these classes. After making sure Original-
Project is the version in your workspace, do the following:

1 Right-click on the project name and select Team→Branch.
2 Enter a name for the branch, such as StarList (see figure 6.15). The branch

name is subject to the same restrictions as the version name.
3 Leave the Start Working in the Branch box checked and click OK.

This scenario is similar to what might happen when you want to create a mainte-
nance branch for an official release, because you often don’t know what version
will be released until after some time has passed, due to testing. When you are
close to releasing, you may begin tagging your code (or have the build process tag
your code) with version labels such as ReleaseCandidate1, ReleaseCandidate2,
and so on. When you finally have a successful candidate, you can return to that
version, add a new version label indicating its status as an official release (such as
Release1.0), and create a new branch, such as Release1.

 Retrieving a branch is identical to retrieving a version. You can use either the
Repository view or select Replace With→Another Branch or Version from the
project’s context menu.

Figure 6.14
Retrieving a previously tagged version
restores all the files in the project to the
way they were when they were tagged.

174 CHAPTER 6
Source control with CVS

6.3 Summary

Source control systems bring two principal benefits to the software development
process: First, a source control system maintains a history of all revisions made to
the source code; second, it controls access to the files so multiple developers can
work on the same set of files without the danger of losing work or corrupting files.

 Access to files can be controlled by using either pessimistic locking or opti-
mistic locking. Pessimistic locking is the more heavy-handed approach: Once a
developer locks a file, no one else can change it until she checks the file back in.
Optimistic locking is the agile way: Anyone can make changes to files at any
time. This approach prevents roadblocks that can slow the development process
and encourages people to take greater responsibility for the source code. The
keys to making optimistic locking work are communication, regular synchroniza-
tion, and following the recommended workflow process.

 The most popular source control system employing the optimistic locking
model is CVS (Concurrent Versions System), which, like Eclipse, is an open-source
project. Eclipse includes a well-integrated client for CVS, which makes the source
control process easy and nearly intuitive.

 Success with CVS depends on careful attention to workflow. Before checking
in your code—committing, in CVS parlance—you should first make sure it com-
piles and passes the unit tests successfully. In addition, you should synchronize
your source code with the most recent changes others have made (and resolve
any conflicts if necessary) and make sure the resulting combination also compiles
and passes the unit tests successfully.

Figure 6.15
Creating a new branch. Changes
made in one branch will not affect the
source code in another branch.

Summary 175

 The revision history CVS maintains allows you to retrieve any previous revi-
sion of a file (or set of files), which is invaluable when a bug or design flaw is dis-
covered belatedly. CVS also lets you tag a project with a version, which in effect
takes a snapshot of the project at a given point in time.

 Another powerful CVS feature is the ability to branch a project, creating mul-
tiple revision histories. The main branch, called the head, is used for the main
line of development, whereas a branch might be created to maintain a released
version of the project. This way, a bug can be fixed in the released code without
introducing new and unstable code.

177

7Web development tools

In this chapter…
■ An overview of web application design
■ An introduction to JSPs and servlets
■ Installing the Tomcat web server and the Sysdeo

Tomcat plug-in
■ Creating JSPs and servlets in Eclipse
■ Building a sample web application
■ Debugging JSPs and servlets, including

multithreaded debugging

178 CHAPTER 7
Web development tools

Computer applications are not very useful if they don’t provide output of some
sort. An easy and popular way to do this today is to use a web browser to provide
a programmable graphical user interface. In this chapter we’ll examine Tomcat,
a web server that can be programmed using Java servlets and JavaServer Pages
(JSPs); and the Sysdeo Tomcat plug-in that allows you to control Tomcat and
debug programs from within the Eclipse environment.

7.1 Developing for the Web

An important goal in designing an application with a GUI is to separate the busi-
ness logic from the presentation logic. There are a number of different ways to
accomplish this, but one popular and successful approach is a pattern called the
MVC architecture. This pattern divides the design into three principal compo-
nents: the Model, the View, and the Controller.

 In brief, the Model refers to the application’s data model, the View (as you
might expect) represents the presentation logic, and the Controller represents
the logic that mediates between the two and allows the user to interact with the
View and the Model. One of the main benefits of a properly designed MVC
application is that each component is isolated to a large degree from the other
components. This isolation makes it easier, for example, to change an applica-
tion’s interface from a web application to an application using a graphical inter-
face such as the standard Java Swing/AWT or Eclipse’s SWT. (See appendix D for
more information about Eclipse’s windowing library.)

 In developing for the Web using Java, MVC is usually implemented as follows:
■ Model—JavaBeans or value objects
■ View—HTML and JSP
■ Controller—Servlets and ordinary Java classes

Implementing a design using these components requires a kind of web server
called a servlet container. Tomcat, from the Apache Organization’s Jakarta project,
is the de facto standard servlet container, as well as the official, Sun-approved,
reference implementation for Java servlets and JSP. Like all Apache software,
Tomcat is free and open-source.

7.1.1 The web, HTML, servlets, and JSP

It is impossible to adequately introduce a topic as large as servlets and JSP in a
few short pages, but we hope to provide enough of an overview that readers
unfamiliar with topic can follow the discussion. Most people are familiar with

Developing for the Web 179

how HTML, the Web, and web browsers work: A user types a server’s address
(and possibly a page name) into a browser, and the web server returns a page
written in HTML, which the browser then renders. In some cases the web page is
simply a static file that the web server has waiting for all users that request it; in
other cases, the web page is not a file, but rather, text that is generated program-
matically based on a specific user’s request. Apart from the greater interactivity
that the latter provides, it makes no difference to the user or the user’s browser
how the web page was created.

 A servlet container provides two ways to interact with a user’s browser: JSP
and servlets. (As you’ll see, servlets are a special type of Java class that extend the
abstract class javax.servlet.http.HttpServlet.) Both accept requests from a
browser and both can send text (or other data) to a browser. By far the easiest to
use are JSPs, because they permit you to use a scripting language in what is oth-
erwise a standard HTML page.

7.1.2 JSP overview

JSP is a mixed blessing. It allows you to embed script commands in HTML rang-
ing from special JSP tags to arbitrary Java code. As we mentioned, JSPs are best
used for the presentation logic of an application and are best developed by peo-
ple skilled in web design rather than programming. Mixing large amounts of
code with HTML leads to JSPs that are hard to understand and hard for designers
and developers to maintain. Sometimes this situation is unavoidable, but to the
greatest extent possible, programming logic should be implemented in servlets
or in JSP custom tags.

 It helps to understand that JSP is not interpreted at runtime. Rather, the first
time a JSP is invoked, it is converted into a Java class—a servlet, in fact—and
then compiled. Within this servlet is a service method that is called by the serv-
let container. Scripting elements are converted to Java code, and static HTML is
converted to print statements inside the service method.

 There are four principal types of JSP scripting elements: scriptlets, expres-
sions, tags, and directives. We’ll discuss them next.

JSP scriptlets
JSP scriptlets are sections of Java code that are placed verbatim in a JSP between
the characters <% and %>. The following example initializes two variables:

<% int myVar = 10;
 String message="Hello";
%>

180 CHAPTER 7
Web development tools

Code such as this is included unchanged in the servlet’s service method, so dif-
ferent scriptlets on a page can work together. A scriptlet further down can use
the value of myVar that is declared here. The following example prints the word
Hey ten times:

<% for(int i=0; i<myVar; i++) { %>
 <H2>Hey</H2>
<% } %>

JSP expressions
JSP expressions, as the name suggests, are Java expressions that can be embedded
in HTML code between the characters <%= and %>. The value of the expression is
included as part of the HTML that is sent to the browser; this is in effect a short-
cut for printing values on a web page. The following prints the value of myVar
defined earlier:

<%= myVar %>

JSP tags
JSP tags (also called actions) are XML tags that invoke Java code defined elsewhere.
JSP includes a number of standard tags, but you can also create a custom tag
library that includes your own tags.

 The following three tags are particularly important:
■ <jsp:useBean id="name" class="classname" scope="scope"/>—Attempts

to obtain a reference to a JavaBean using the name name in the given scope.
(Here we’ll only consider the request scope, which is associated with a sin-
gle request from a browser.) If a bean with the specified name has not yet
been created, the servlet container instantiates the bean class using its no-
args constructor.

■ <jsp:setProperty name="name" property="property" value="value"/>—
Sets the property property to the value value in a bean named name that
was obtained using the <jsp:useBean> tag.

■ <jsp:getProperty name="name" property="property"/>—Gets the prop-
erty property from a bean named name that was obtained using the
<jsp:useBean> tag.

These tags are useful, as you’ll see soon, because you can use them to pass data
in the form of JavaBeans back and forth between servlets and JSPs.

Tomcat and the Sysdeo Tomcat plug-in 181

JSP directives
JSP directives are instructions to the JSP interpreter. In the examples, you’ll use
the include directive, which allows you to include another file inside a JSP at any
point. Here you’ll use it to include the standard HTML preamble plus a banner
at the top of each JSP.

7.1.3 Servlet overview

In the simplest possible terms, a servlet is a Java class that can be invoked by the
servlet container to process an HTTP request. In turn, it can respond to the request
or it can forward the request to another servlet or JSP.

 A servlet extends the HttpServlet class and, at a minimum, must implement
one of two methods doGet() or doPost(), for handling GET and POST requests,
respectively. Because a servlet can handle both request types identically, it’s usual
to implement one (doPost(), for example) and have the other (doGet()) call
doPost(). Both of these methods take the same two parameters: a request object
and a response object.

 A servlet can do everything a JSP can do, and more. It can respond to a
request by writing HTML, as follows:

public class TestServlet extends HttpServlet
{
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 {
 PrintWriter out = response.getWriter();
 out.println("<HTML><HEAD>");
 out.println("<TITLE>Hello</TITLE>");
 out.println("</HEAD><BODY>");
 out.println("Hello!");
 out.println("</BODY></HTML>");
 }

Of course, this isn’t good practice, because it’s not easy to lay out and format a
web page within print statements like this. Presentation is a job for JSP. The sam-
ple application in section 7.3 demonstrates some techniques for integrating JSPs
and servlets that utilize the best advantages of each.

7.2 Tomcat and the Sysdeo Tomcat plug-in

Eclipse includes a Tomcat server plug-in. However, it’s not the complete server, so
you’ll need to download the complete Tomcat binary distribution from the Apache
web site; you’ll find it listed under the Jakarta project. Like Eclipse, Tomcat is an

182 CHAPTER 7
Web development tools

open source project, so you must decide which type of build you want to use: a
release version; a more recent (but possibly less stable) milestone version, such as
a beta release; or—if you like to live dangerously—a nightly build. Like other
Java software, there is only one version for all platforms, but you need to choose
the compression format most appropriate for your platform (such as .zip for
Windows or .tar.gz for Linux). In addition, you need to make sure the version of
Tomcat you choose is supported by the Sysdeo Tomcat plug-in.

7.2.1 Installing and testing Tomcat

Installation is as simple as downloading the compressed file from Apache (or a
mirror site) and decompressing it to a directory on your hard drive, such as C:\Tom-
cat. After you unzip Tomcat, you can run it from the command line as follows:

1 Make sure the environment variable JAVA_HOME is set. If it isn’t, you can
type it in at the command line before starting Tomcat, or add it to your
environment in the usual way.

2 Change to the Tomcat bin directory. If you downloaded build 4.1.18 and
extracted it as described, the full directory path might be: C:\Tomcat\
jakarta-tomcat-4.1.18\bin, for example. At the command prompt, run
the script startup.bat for Windows or startup.sh for Linux or UNIX. On
Windows, this script launches Tomcat in a new window.

3 Test the installation by starting a web browser and entering http://local-
host:8080 in the address box. Doing so should bring up the default Tom-
cat home page, which includes the message “If you’re seeing this page via
a web browser, it means you’ve setup Tomcat successfully. Congratulations!”

You’ll notice that you need to specify the HTTP port 8080 in the URL, because
this is what Tomcat is initially configured to use—it’s different than the default
HTTP port 80. If you don’t want to have to specify the port each time, you can
change it in the Tomcat server.xml configuration file, providing this setting
doesn’t conflict with another HTTP server running on your machine.

 You can also make sure Tomcat can display JSP pages by clicking on the JSP
Examples link under Examples on the left side of the page and then running
one or more of the examples on the page that follows. Shut down Tomcat by run-
ning either shutdown.bat on Windows or shutdown.sh on UNIX or Linux.

Tomcat and the Sysdeo Tomcat plug-in 183

7.2.2 Installing and setting up the Sysdeo Tomcat plug-in

Download the Sysdeo Tomcat plug-in from http://www.sysdeo.com/eclipse/
tomcatPlugin.html. Unzip the file to the Eclipse plugins directory. If you do not
have a zip utility, you can use the Java archive utility as follows:

1 The jar command has no option for specifying the destination directory,
so you must change to the Eclipse plugins directory (for example, C:\
Eclipse\plugins).

2 Assuming the plug-in version you downloaded is named tomcatPluginV21.
zip and you’ve downloaded it to the C:\downloads directory, enter the
command jar xf C:\downloads\tomcatPluginV21.zip.

3 Eclipse automatically finds the plug-in the next time it starts, so stop Eclipse
if necessary and then start it again.

Some plug-ins are inconsistent in the way they are packaged and must be unzipped
into the Eclipse directory or higher rather than the plugins directory. If you can-
not get a plug-in to work after installing it, this is the first thing you should check.
To make certain that plug-ins are installed in the right directory, you may wish to
unzip them to another directory first and then copy them from there—this
approach has the added benefit of providing a backup of all your plug-ins, which
can make it easier to upgrade to a new version of Eclipse later.

 After installing the plug-in, you need to add Tomcat to the Java perspective
and, optionally, to the Resource perspective. (Note that if you are working with a
freshly installed Eclipse installation and you added the Tomcat plug-in before
starting Eclipse the first time, you may already see Tomcat as one of the main
menu selections.) Change to each perspective in turn and follow these steps:

1 Select Window→Customize Perspective from the main menu.
2 Expand the Other selection and click the box next to Tomcat. Click OK.

In addition to the new menu option, these steps add three new tool buttons to
the main toolbar (see figure 7.1).

 Configure the Tomcat plug-in by telling it where Tomcat is installed and
which projects should be available for use in Tomcat projects, as follows:

Figure 7.1
The Tomcat tool buttons. You can
start or stop Tomcat using either the
tool buttons or the Tomcat menu
selection.

184 CHAPTER 7
Web development tools

1 Select Window→Preferences→Tomcat.
2 Select the version of Tomcat you are using.
3 Enter, or click Browse to find, the Tomcat home directory. If you installed

Tomcat as described earlier, this directory is C:\Tomcat\jakarta-tomcat-
4.1.18. The entry for the configuration file will be updated automatically.

4 In the rest of this chapter, you will continue to use the Persistence project
you began in chapter 3. So, in the Add Java Projects to Tomcat Classpath
section, click the box next to Persistence. (See figure 7.2.)

5 Click OK.

You can now test the Tomcat plug-in either by clicking the Start Tomcat tool but-
ton or by selecting Tomcat→Start Tomcat from the main menu. Doing so dis-
plays startup information in the console window; once Tomcat is running, enter

Figure 7.2 Tomcat preferences. Select the version of Tomcat you are using and enter its path here.

Tomcat and the Sysdeo Tomcat plug-in 185

the URL http://localhost:8080 in your browser’s address box and verify that you
get the Tomcat home page.

TIP Although you won’t need to edit much XML, you may want to install an
XML editor anyway. It will provide syntax coloring and code assistance
not only for XML, but also for HTML and JSP. Eclipse’s Plug-in Develop-
ment Environment (PDE) provides a wizard that builds a basic XML edi-
tor, but you can also download a free plug-in such as XMLBuddy from
http://www.xmlbuddy.com. Installing XMLBuddy is a simple matter of un-
zipping and copying the plug-in to the Eclipse plugins directory.

Tomcat logging
Recent versions of Tomcat use another Apache component, Commons Logging, to
provide logging services. This component is a wrapper that provides a single inter-
face supporting different loggers, such as log4j. The wrapper locates a logging API
through a somewhat complicated discovery process at runtime. If it finds the log4j
configuration file that you created in chapter 3, you’ll discover that Tomcat logs
a lot of debug information in the Eclipse console view and takes a long time to
start up.

 You have two options to bring logging under control. The first is to continue
to let Tomcat use your log4j configuration file, but to increase the logging
threshold to filter out the numerous debug messages. To do this, open the file
log4j.properties file in the bin folder under the Persistence project and change
DEBUG in the second line to INFO, as follows:

Assign two appenders to root logger
log4j.rootLogger=INFO, myConsole, myLogFile

The second option is to configure the Commons Logging component to use a
different logger (or a different instance of log4j) than your Persistence compo-
nent. You can find out more about this technique at the Apache web site.

7.2.3 Creating and testing a JSP using Eclipse

You can further test the plug-in installation by creating a Tomcat project with a simple
JSP file. First create the project that you’ll use later for the sample web application:

1 In the Java perspective, right-click in the Package Explorer view and
select New→Project from the context menu.

2 In the New Project dialog box, select Java on the left side and Tomcat
Project on the right side (see figure 7.3). Click Next.

186 CHAPTER 7
Web development tools

3 Enter a name for the project, such as StarList. You can set additional options
by clicking Next, but in this case accept the defaults and click Finish.

Note that if you previously selected a working set that includes only the Persis-
tence project, you may need to choose Deselect Working Set from the Package
Explorer menu to get this new project to appear. You can also edit the current
working set and add this project, or you can create a new working set that includes
both the Persistence and StarList projects. In any case, both the Persistence and
StarList projects should appear in the Package Explorer view (see figure 7.4).

 Now you can create a JSP file and run it. To do this, follow these steps:

1 Right-click on the StarList project and select New→File from the con-
text menu.

2 Enter a name for the file, such as Testing.jsp. If you haven’t installed an
XML editor, Eclipse won’t recognize this type of file, so it will open the
file with the default text editor.

3 Enter some HTML or JSP code, such as the following:

Figure 7.3
A new Tomcat project. The
Sysdeo Tomcat plug-in adds a
new option, Tomcat Project, to
the New Project Wizard.

Tomcat and the Sysdeo Tomcat plug-in 187

<HTML>
<HEAD>
<TITLE>Testing</TITLE>
</HEAD>
<BODY>
Testing
<% for(int i = 1; i <= 3; i++) { %>
 <%= i%> ...
<% } %>

</BODY>
</HTML>

4 Right-click in the editor and select Save.
5 Start (or restart) Tomcat so that the new project is registered.
6 Start your browser. Load the JSP by entering the server address plus the

web application context, which by default is the project name plus the
JSP file name: http://localhost:8080/StarList/Testing.jsp.

If all is well, you will see a web page showing Testing 1 ... 2 ... 3

7.2.4 Creating and testing a servlet in Eclipse

Let’s add a servlet to accompany the JSP file you created earlier. Do this as follows:

1 Right-click on the new Tomcat project, StarList, and select New→Class.
2 In the New Java Class dialog that opens, note that the source directory is

automatically set to StarList/WEB-INF/src.

Figure 7.4
The new Tomcat project, StarList. The Tomcat plug-in
creates the directory structure that Tomcat expects.

188 CHAPTER 7
Web development tools

3 Enter the package name org.eclipseguide.starlist.
4 Enter the class name TestServlet.
5 Enter javax.servlet.http.HttpServlet as the superclass. (You can do this

most easily by clicking the Browse button and typing the first few letters
of the unqualified classname to narrow the list of classes that appear and
then selecting HttpServlet from the list.)

6 Make sure the option to create a main() method is not selected, and click
Finish.

To the class that is generated, add a doGet() method. (Note that you can get
Eclipse to generate the method skeleton for you by typing doGet and pressing
Ctrl-Space.) Change the method as follows:

public class TestServlet extends HttpServlet
{
 protected void doGet(
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 PrintWriter out = response.getWriter();
 out.println("Hello from the servlet!");
 }
}

To test the servlet, enter the following URL in your browser: http://localhost:
8080/StarList/servlet/org.eclipseguide.starlist.TestServlet. It should produce a
web page with the text Hello from the servlet! If instead you get an error stating
that the requested resource is unavailable, you may need to edit the web.xml file
in the Tomcat conf directory. This is true of the most recent stable release, 4.1.18,
available at the time of this writing. One way to do this is to add a link to this file
to your project and use the XML editor in Eclipse to edit it.

Using a linked folder to edit web.xml
Eclipse 2.1 introduced a feature that allows a directory to be contained inside an
Eclipse project logically, but remain located elsewhere physically, similar to the
way links work in UNIX. If you need to manually manage the Tomcat configura-
tion files, you can make a link to the Tomcat configuration directory as follows:

1 Right-click on the StarList project name and select New→Folder.
2 Click Advanced in the New Folder dialog box. Doing so displays the option

to link to a folder.

Tomcat and the Sysdeo Tomcat plug-in 189

3 Enter a name for the new folder in your project, such as Conf.
4 Click the Link to Folder in the File System box.
5 Type in the path to the Tomcat conf folder, or click Browse to locate it; if

Tomcat is installed as described earlier, this directory is C:\Tomcat\
jakarta-tomcat-4.1.18\conf (see figure 7.5).

6 Click Finish.

You can now expand the Conf folder in the Package Explorer view like any other
folder in your project and edit the files in it. Note that the Conf folder has a little
arrow in the bottom-right corner; this indicates that it is a shortcut and acts as a
visual cue to remind you that the folder isn’t part of your project tree.

 Double-click on web.xml and find the following section, which is currently
commented out:

 <!--
 <servlet-mapping>

Figure 7.5
Creating a link to an external
folder. Unlike the Import→File
System menu selection, this
option does not copy the
contents into the Eclipse
workspace directory.

190 CHAPTER 7
Web development tools

 <servlet-name>invoker</servlet-name>
 <url-pattern>/servlet/*</url-pattern>
 </servlet-mapping>
 -->

To uncomment it, remove the <!-- at the beginning and --> at the end. Save the
file, and then restart the Tomcat server by clicking the Restart Tomcat tool but-
ton or selecting Tomcat→Restart Tomcat from the main menu.

7.2.5 Placing a Tomcat project under CVS control

In principal, there is no difference between placing a Tomcat project under
source control and any other Java project. You need watch out for several things,
though. When you check in a Tomcat project, the files that Eclipse uses to store
project and classpath information (.project and .classpath) are automatically
selected as candidates for adding to the Concurrent Versions System (CVS), but
you need to manually add the Tomcat configuration file, .tomcatplugin. At the
same time, you may wish to change its file type from binary to text (which, for his-
torical reasons, is called ASCII in Eclipse’s CVS client). Assuming you’re already
using CVS, as described in chapter 6, one way to do this is as follows:

1 Change to the Resource perspective. (The configuration files do not
appear in the Java perspective.)

2 Right-click on the filename .tomcatplugin and select Team→Add to Ver-
sion Control.

3 Right-click on the filename again and select Team→Change ASCII/
Binary Property.

4 You can select either of the two ASCII options, but for consistency with
the other ASCII files, choose ASCII with Keyword Substitution. Doing so
presents further options; select ASCII with Keyword Expansion -kkv.

5 Click Finish.

The Tomcat plug-in configuration file is not the only file that will have the wrong
file type; Eclipse doesn’t recognize JSP files, so they are consequently treated as
binary like all other unknown types. Rather that fix each JSP manually, it’s better
to add JSPs to the list of recognized file types:

1 Select Window→Preferences→Team→File Content and click the Add button.
2 You are prompted for a file extension. Enter jsp and click OK.

Building a web application 191

3 Verify that jsp appears in the file extension list and that its type is ASCII.
If the type is incorrect, click on it and then click the Change button.

4 Click OK.

The final thing to watch for is that when you first check out a project, the Tomcat
plug-in will not update the Tomcat server.xml file, so the web application (that is,
the JSPs and servlets in the project) will not be recognized. You must force the
plug-in to register the web application by right-clicking on the Tomcat project’s
name and selecting Tomcat Project→Update Context in Server XML.

7.3 Building a web application

Let’s continue with the Persistence application you began in previous chapters by
adding a simple web interface to let users list existing data and add new data.
The goal is to eventually allow them to enter any kind of astronomical bodies,
but for now you’ll limit them to stars.

 If you followed the instructions in chapter 6 to remove the astronomy package
from the main branch in CVS and create an OriginalProject branch that includes
the astronomy package, make sure you are working in the OriginalProject
branch. This is essentially the same state you were in at the end of chapter 5, so
you shouldn’t have any problems if you didn’t follow the examples in chapter 6.

7.3.1 The web application directory structure

In the same way that Java applications are packaged into an archive called a JAR
file, web applications can be packaged into a WAR file, using the same standard
Java archive utility, jar. The J2EE specification defines the directory structure a
WAR file must have, and this same directory structure is generally used even
when the application is not archived. One of the benefits of using the Tomcat
plug-in is that it creates and maintains this WAR structure for you.

 This is what the project’s directory tree looks like after you create the JSP and
servlet and refresh the project:

StarList
| Testing.jsp
|
+–––WEB-INF
| +–––classes
| | +–––org
| | +–––apache
| | | +–––jsp
| | | Testing_jsp.class

192 CHAPTER 7
Web development tools

| | +–––eclipseguide
| | +–––starlist
| | TestServlet.class
| |
| +–––lib
| +–––src
| +–––org
| +–––eclipseguide
| +–––starlist
| TestServlet.java
|
+–––work
 +–––org
 +–––apache
 +–––jsp
 Testing_jsp.java

The significance of these directories is as follows:
■ StarList (project root)—JSP source files. In addition, you put resources such

as images and HTML files in this directory (or in subdirectories below
this directory).

■ WEB-INF—Servlets. The source code goes under the src directory, and the
compiled classes go under the classes directory.

■ work—JSP files are automatically converted to Java source files and com-
piled by Tomcat under this directory. As you’ll see in section 7.3.3, you can
use the Java source files to debug a JSP if necessary.

In addition to this development environment, you need to be aware of several
files in the Tomcat environment. In particular, the web.xml files (which you’ve
already seen) and server.xml are used to configure web applications and the
Tomcat server.

7.3.2 Web application design and testing

So far, you have a persistence mechanism that can store and retrieve arbitrary
Java objects using an arbitrary index. Let’s use it (along with the Star class) to
build a web site you can use to enter and look up information about stars. (You
may want to extend this site later so the existing information can be modified or
deleted.) Figure 7.6 shows a map of the proposed web site.

NOTE As you’ve continued to extend the sample application in previous chap-
ters, in the interest of keeping the focus on developing the application,
we’ve stressed agile techniques less and less, particularly test-driven

Building a web application 193

development. The assumption has been, however, that this work contin-
ues off-stage.

As you move into building an application with multiple tiers, testing
becomes significantly more difficult, and you’ll find you need more tools
(and more complex tools) in order to continue with the test-driven ap-
proach. One such tool is Cactus, an Apache Jakarta project that extends
JUnit to support testing server-side code; we encourage you to learn more
about Cactus by visiting its web site at http://jakarta.apache.org/cactus/.
Another approach is to simulate the server-side environment (or parts
of it) by using mock objects—that is, objects that imitate the behavior of
the real objects your code normally calls. You can learn more about mock
objects at http://www.mockobjects.com. Because of their scope, we won’t
cover these topics here.

The StarList home page
You’ll begin with the home page; it’s straightforward, because it only needs to
provide users with a way to select between listing existing stars and entering new
stars. This page can be straight HTML, but even if it is, you can give it a .jsp
extension to add flexibility. (Most importantly, an HTML page cannot handle
POST requests, so servlets can forward only GET requests to an HTML page. A JSP,

Figure 7.6
Web site map. Each box
represents a web page
that is implemented as a
JSP. In some cases, the
logic connecting them
(represented by arrows)
includes servlets.

194 CHAPTER 7
Web development tools

however, can handle both, and there are often reasons—such as providing better
security—for preferring POST requests over GET requests.) As long as it’s JSP any-
way, you can create a common header and banner for all your applications and
use a JSP page directive to include it.

 To create the header, use the New→File selection from the StarList project’s
context menu. It doesn’t matter what you call the header, but because it includes
HTML, let’s call it Header.html (see listing 7.1).

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Star List</TITLE>
</HEAD>
<BODY BGCOLOR="000000" TEXT="E1D57E"><H1><CENTER>
</H1>

<P></CENTER>

If you’re using the XMLBuddy plug-in, you’ll notice that it colorizes the text and
(somewhat) helpfully generates a closing tag for every tag you enter; although
closing tags are necessary for XML, they’re not for HTML. After typing this code,
save the file. (The banner uses an image file; you can download it from the book’s
web site along with the rest of this application, but it’s not necessary because the
ALT attribute supplies text in its place.)

 Next, create the Home.jsp home page the same way, using the New→File
selection from the project context menu (see listing 7.2). This page has two forms,
each with a Submit button that forwards to a different page; one, labeled List All
Stars, requests a servlet, StarListServlet; the other, labeled Enter a Star, requests
another JSP, NewStarEntry.jsp. Notice how the home page includes the header
file you created in the previous step.

<%@ include file="Header.html" %>
<CENTER>
<P>
Welcome to the Star List home page. You can find information
about stars or enter a new star. Press one of the following
buttons to continue:
<P></P>
<FORM METHOD="POST"
 ACTION=

Listing 7.1 Header.html

Listing 7.2 Home.jsp

Building a web application 195

 "/StarList/servlet/org.eclipseguide.starlist.StarListServlet">
<INPUT TYPE="SUBMIT" NAME="ACTION" VALUE="List all stars">
</FORM>

<FORM METHOD="POST" ACTION="/StarList/NewStarEntry.jsp">
<INPUT TYPE="SUBMIT" NAME="ACTION" VALUE="Enter a star">
</FORM>
</CENTER>
</BODY>
</HTML>

Once you’ve created these two files, you can start Tomcat (if it’s not running
already) and view the home page by entering the URL http://localhost:8080/
StarList/Home.jsp in your browser. But don’t click either button yet!

The new star entry form
Next let’s consider NewStarEntry.jsp (listing 7.3), because it permits you to enter
some data. Apart from the JSP directive to include the banner, it’s mostly straight-
forward HTML. A form is used to allow the user to enter information about a star;
this form has a Submit button that forwards the information to a servlet, StarEn-
tryServlet. An additional form has a single button to let the user cancel out of
the operation and return to the home page:

<%@ include file="Header.html" %>

<FORM METHOD="POST"
 ACTION="/StarList/servlet/org.eclipseguide.starlist.StarEntryServlet">
<CENTER>
<TABLE>

<TR><TD COLSPAN=2>
<CENTER><H2>New star</H2></CENTER></TD></TR><P>
Enter the star's information below and press Save.<P>
<TR>
 <TD>Name</TD>
 <TD><INPUT TYPE="TEXT" NAME="name"></TD>
</TR>
<TR>
 <TD>Catalog number</TD>
 <TD><INPUT TYPE="TEXT" NAME="catalogNumber"></TD>
</TR>
<TR>
 <TD>Absolute magnitude</TD>
 <TD><INPUT TYPE="TEXT" NAME="absoluteMagnitude"></TD>
</TR>

Listing 7.3 NewStarEntry.jsp

196 CHAPTER 7
Web development tools

<TR>
 <TD>Spectral type</TD>
 <TD><INPUT TYPE="TEXT" NAME="spectralType"></TD>
</TR>
<TR>
 <TD>Constellation</TD>
 <TD><INPUT TYPE="TEXT" NAME="constellation"></TD>
</TR>
<TR>
 <TD>Galaxy</TD>
 <TD><INPUT TYPE="TEXT" NAME="galaxy"></TD>
</TR>
<TR>
 <TD>Radius</TD>
 <TD><INPUT TYPE="TEXT" NAME="radius"></TD>
</TR>
<TR>
 <TD>Mass</TD>
 <TD><INPUT TYPE="TEXT" NAME="mass"></TD>
</TR>
<TR>
 <TD>Period of rotation</TD>
 <TD><INPUT TYPE="TEXT" NAME="rotationPeriod"></TD>
</TR>
<TR>
 <TD>Surface temperature</TD>
 <TD> <INPUT TYPE="TEXT" NAME="surfaceTemperature"></TD>
</TR>
<TR>
 <TD COLSPAN=2>
 <CENTER>
 <INPUT TYPE="SUBMIT" NAME="ACTION" VALUE="Save">
 </CENTER>
 </TD>
</TR>
</FORM>
</TABLE>
<FORM METHOD="POST" ACTION="/StarList/Home.jsp">
 <INPUT TYPE="SUBMIT" NAME="ACTION" VALUE="Cancel">
</FORM>
</CENTER>
</BODY>
</HTML>

Once you’ve created and saved this file, you can click the Enter a Star button on
the home page. Doing so displays the screen shown in figure 7.7.

Building a web application 197

7.3.3 Programming with servlets and JSPs

So far, you’ve built static pages. You used some JSP, but as a convenience rather
than out of necessity. To proceed further, you need to do some real program-
ming. The next step is to create a servlet that uses this information to create a
Star object and save the information in the database; but before you can do that,

Figure 7.7 The page generated by NewStarEntry.jsp. The user enters data using a
standard HTML form. (Image courtesy of NASA and the Hubble Heritage Team [STScl/AURA].)

198 CHAPTER 7
Web development tools

you need to change some settings to get the two projects, StarList and Persis-
tence, working together.

Multiproject build settings: build paths and build order
When you installed Tomcat, you saw that you need to add the projects you’re
using (in this case, Persistence and StarList) to the Tomcat classpath by selecting
Window→Preferences→Tomcat from the main menu. You also need to add Per-
sistence to the StarList project’s build path as follows:

1 Select Properties from the StarList project context menu.
2 Select Java Build Path on the left of the Properties dialog box.
3 Click on the Projects tab on the right. Doing so displays a list of all the

other projects in your workspace.
4 Click the box next to Persistence to add it to your build path (assuming

it’s not already selected) and click OK.

When one project depends on another, it’s important that they get built in the
right order. Because StarList depends on Persistence, and Persistence was the
first project you created, this isn’t an issue here; the default build order is already
correct. You can verify or change the build order as follows:

1 Select Window→Preferences from the main menu.
2 Select Build Order. Projects are listed in the order they are built by

Eclipse (see figure 7.8).
3 To change the build order, select a project and then click Up or Down as

appropriate.

The star entry servlet
To create the star entry servlet, begin by selecting New→Class from the project
context menu. Enter an appropriate package name, such as org.eclipseguide.
starlist, enter the name StarEntryServlet, and make sure you select javax.serv-
let.http.HttpServlet as the superclass. In the editor, create method stubs for
doGet() and doPost() by typing the first few letters of each (case doesn’t matter)
and pressing Ctrl-Space. You’ll be handling both POST and GET requests identi-
cally, so you can either have them both call another method or have one call the
other. Taking the latter approach, you can change doGet() as follows:

Building a web application 199

 protected void doGet(
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 doPost(request, response);
 }

Note that the method stub Eclipse generated included a call to the superclass’s
doGet() method, but it’s unnecessary; we’ve removed it here.

Data validation and conversion
The code for creating a Star, filling in the fields, obtaining an ObjectManager,
and using it to persist the Star should be familiar from previous chapters. The
only new twist is that you obtain the values from the form by using the request.
getParameter() method, which returns a String. In the case of numeric fields,
you need to perform the proper conversion, using the methods Double.parse-
Double() and Long.parseLong(). (The Star class only uses these two numeric
types.) You need to be careful to validate the user’s input, however, because HTML
forms don’t provide a way to perform validation—the user can type anything (or
nothing) into any of the fields.

Figure 7.8 Build order. If the default build order is not correct, you can set the order
manually.

200 CHAPTER 7
Web development tools

 To provide verification, after the star information is saved, the servlet retrieves
it again from the Persistence component and calls a JSP to display it to the user.
Notice that a servlet can call another servlet, JSP, or HTML page by obtaining a
RequestDispatcher. Listing 7.4 shows the doPost() method followed by the con-
version routines.

 protected void doPost(
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 ObjectManager om =
 ObjectManager.createObjectManager(Star.class);
 Star star = new Star();
 star.name = request.getParameter("name");
 star.catalogNumber = request.getParameter("catalogNumber");
 star.absoluteMagnitude =
 cvtDouble(request.getParameter("absoluteMagnitude"));
 star.spectralType = request.getParameter("spectralType");
 star.constellation = request.getParameter("constellation");
 star.galaxy = request.getParameter("galaxy");
 star.radius = cvtLong(request.getParameter("radius"));
 star.mass = cvtLong(request.getParameter("mass"));
 star.rotationPeriod =
 cvtLong(request.getParameter("rotationPeriod"));
 star.surfaceTemperature =
 cvtLong(request.getParameter("surfaceTemperature"));

 int index = om.getNextKey();
 om.save (star, index);
 star = (Star) om.get(index);

 String destPage = "/DisplayStar.jsp";
 if (star == null)
 {
 destPage = "/Home.jsp";
 }
 else
 {
 request.setAttribute("star", star);
 }

 RequestDispatcher dispatcher =
 getServletContext().getRequestDispatcher(destPage);
 dispatcher.forward(request, response);
 }

 public double cvtDouble(String value)
 {

Listing 7.4 The StarEntryServlet’s doPost() method

Building a web application 201

 double number = 0;

 try
 {
 if (value != null)
 {
 number = Double.parseDouble(value);
 }
 }
 catch (NumberFormatException e)
 {
 // ignore
 }
 return number;
 }

 public long cvtLong(String value)
 {
 long number = 0;

 try
 {
 if (value != null)
 {
 number = Long.parseLong(value);
 }
 }
 catch (NumberFormatException e)
 {
 // Ignore
 }
 return number;
 }

Note that you need to change the visibility of the save() method in ObjectMan-
ager to public. This is an error the unit tests didn’t catch because they were in the
same package.

 Notice that the FileObjectManager includes a new method you haven’t seen
before: getNextKey(). It is essentially a counter you use to obtain a new index when
you want to add a new object to the data store. It uses the methods in FilePer-
sistenceServices to store, retrieve, and increment a value in a separate file with
a single entry. This isn’t very efficient, but it’s sufficient for now:

 public int getNextKey()
 {
 int key;
 String seqFileName = className + ".nextkey";
 Vector v = FilePersistenceServices.read(1);

202 CHAPTER 7
Web development tools

 if (v == null)
 {
 key = 1;
 v = new Vector();
 v.add(Integer.toString(2));
 FilePersistenceServices.write(1, v);
 }
 else
 {
 try
 {
 key = Integer.parseInt((String) v.get(0));
 }
 catch (NumberFormatException e)
 {
 key = 1;
 }
 v.clear();
 v.add(Integer.toString(key + 1));
 FilePersistenceServices.update(seqFileName, 1, v);
 }
 return key;
 }

Note that we don’t show the unit tests used to develop this method, or a method
for resetting the key back to zero (required by the unit tests).

Robust string handling
You may wonder why strings are not verified. As you probably remember, data is
stored in a text file in a comma- and double-quote–delimited format, which is
parsed using the standard Java StringTokenizer class. This is simply too fragile a
scheme to store any real data, and you need to fix the FilePersistenceServices
class instead, so that no string will cause a problem.

 One way to make strings safe is to escape all characters that might cause a
problem. You can easily do that using the URLEncoder and URLDecoder classes that
Java provides. This leaves the problem that StringTokenizer doesn’t deal prop-
erly with null entries; you can either provide a special nonnull null entry (like the
word null) or replace StringTokenizer with a more robust parser. The latter is the
better option in a production environment, because StringTokenizer can be
pretty slow (due to its being threadsafe); but you’ll never use a file-based persis-
tence component in a production environment, so you’ll work around StringTo-
kenizer’s limitation for this example.

 The relevant method for encoding strings is FilePersistenceServices.
vector2String(). But to begin, you should think of all the devious things users

Building a web application 203

might enter, and create the appropriate test cases in FilePersistenceServicesTest,
testVector2String(), and testString2Vector(). These tests are not shown here,
but vector2String looks like this after it’s been bulletproofed against rogue
string values:

 private static final String ENCODING = "UTF-8";

 static String vector2String(Vector v, int key)
 {
 String s = null;
 StringBuffer buffer = new StringBuffer();
 buffer.append("\"" + Integer.toString(key) + "\",");
 for (int i = 0; i < v.size(); i++)
 {
 buffer.append("\"");
 String elem;
 if (v.elementAt(i) == null)
 {
 elem = "null";
 }
 else
 {
 elem = v.elementAt(i).toString();
 if (elem.equals(""))
 {
 elem = "null";
 }
 }
 try
 {

 buffer.append(URLEncoder.encode(elem, ENCODING));
 }
 catch (UnsupportedEncodingException e)
 {
 logger.fatal(
 "Programming error: Bad encoding selected");
 }

 buffer.append("\"");
 if (i != (v.size()—1))
 {
 buffer.append(",");
 }
 }
 s = buffer.toString();
 return s;
 }

The complementary changes to string2Vector() look like this:

Start with
key

Add comma, quote
delimited entry for
each element in v

Unsupported
character set

204 CHAPTER 7
Web development tools

 static Vector string2Vector(String s)
 {
 Vector v = new Vector();
 StringTokenizer st = new StringTokenizer(s, "\",");
 int count = st.countTokens();
 if (count >= 2)
 {
 st.nextToken();
 for (int i = 1; i < count; i++)
 {
 try
 {
 v.addElement(
 URLDecoder.decode(st.nextToken(), ENCODING));
 }
 catch (UnsupportedEncodingException e)
 {
 logger.fatal("Bad encoding selected");
 }
 }
 }
 return v;
 }

Note that there is no need to deal specially with null values here. Because Java
supplies the string value "null" in certain cases, the object-mapping layer already
deals with this situation correctly.

Debugging a servlet
There is nothing special about debugging a servlet—it’s just another Java class.
The only difference from those you’ve seen so far is that you cannot run it
directly. Rather, the servlet is invoked automatically when the Tomcat server gets
a request for it. To see this, place a breakpoint by double-clicking on the right
margin next to the first line of code in the doPost() method. Then, using your
browser, enter the URL for the home page: http://localhost:8080/StarList/
Home.jsp. Click Enter New Star, fill in some data, and then click Save. Eclipse
will automatically change to the Debug perspective, with the cursor on the first
line of code in the StarEntryServlet class (see figure 7.9).

 As usual, you can step into other classes or place breakpoints in any of the code
that is executed—even in other projects, such as the modified vector2String()
method in the FilePersistenceServices class.

 Note, however, that when you are finished debugging, you should not click Ter-
minate, because doing so will stop the Tomcat server. Instead, when you are fin-
ished or encounter an error, click Resume. Tomcat will return an error page to the
browser, if appropriate, and continue listening for more requests.

Use comma
and double
quotes as
delimiters

Building a web application 205

You don’t need to stop and start Tomcat after saving a file; just remember to
save, and Tomcat will recognize that the file has been recompiled. (Or, in the
case of a JSP, it will recognize that it needs to convert the JSP to a Java source file
and recompile.)

Using a JavaBean with JSP
Now you’re ready to display the star information to the user with the first real
JSP. One of the big benefits of JSPs is that they work well with JavaBeans. You can
take advantage of this by adding getter methods to the Star class and its super-
class, CelestialBody, which will make Star, in effect, a read-only JavaBean. To do
this, follow these steps:

1 Find the Star class in the Package Explorer under the Persistence project
and right-click on it.

2 In the context menu, select Source→Generate Getter and Setter.
3 Eclipse offers to generate both getXXX() and setXXX() methods for each

field. Click on each of the getXXX() methods and click OK. Save Star.

Figure 7.9 Debugging a servlet. Don’t click Terminate, or you’ll kill Tomcat. Instead, click
Resume to stop debugging.

206 CHAPTER 7
Web development tools

4 Do the same for the CelestialBody class. (As you know, Star inherits these
methods from CelestialBody.) Save CelestialBody.

Now you can use a <jsp:useBean> tag to obtain and read a Star object in a JSP. In
the StarEntryServlet, you added a Star object to the request with the following
line of code:

request.setAttribute("star", star);

Create a new file, DisplayStar.jsp, and add the JSP code shown in listing 7.5 for
retrieving and displaying this star.

<%@ include file="Header.html" %>

<jsp:useBean id="star" class="org.eclipseguide.astronomy.Star"
 scope="request"/>

<FORM METHOD="POST" ACTION="/StarList/Home.jsp">
<CENTER>
<H2><jsp:getProperty name="star" property="name"/></H2><P>
<TABLE>
</TR>

</TD></TR>
<TR>
 <TD>Catalog number</TD>
 <TD><jsp:getProperty name="star" property="catalogNumber"/></TD>
</TR><TR>
 <TD>Absolute magnitude</TD>
 <TD><jsp:getProperty name="star" property="absoluteMagnitude"/>
 </TD>
</TR><TR>
 <TD>Spectral type</TD>
 <TD><jsp:getProperty name="star" property="spectralType"/></TD>
</TR><TR>
 <TD>Constellation</TD>
 <TD><jsp:getProperty name="star" property="constellation"/></TD>
</TR><TR>
 <TD>Galaxy</TD>
 <TD><jsp:getProperty name="star" property="galaxy"/></TD>
</TR><TR>
 <TD>Radius</TD>
 <TD><jsp:getProperty name="star" property="radius"/></TD>
</TR><TR>
 <TD>Mass</TD>
 <TD><jsp:getProperty name="star" property="mass"/></TD>
</TR><TR>
 <TD>Period of rotation</TD>

Listing 7.5 DisplayStar.jsp

Building a web application 207

 <TD><jsp:getProperty name="star" property="rotationPeriod"/></TD>
</TR><TR>
 <TD>Surface temperature</TD>
 <TD><jsp:getProperty name="star" property="surfaceTemperature"/>
 </TD>
</TR><TR>
 <TD COLSPAN=2><CENTER>
 <INPUT TYPE="SUBMIT" property="ACTION" VALUE="Home">
 </CENTER></TD>
</TR>
</TABLE></CENTER></FORM>
</BODY></HTML>

Notice how nicely the <jsp:useBean> and <jsp:getProperty> tags obviate the need
to do any programming once the servlet has served up the data in a JavaBean.
Unfortunately, JSPs aren’t always this clean. If you want to display a list of all the
stars in the database, for example, you can’t obtain them easily as JavaBeans like
this; at a minimum, you need some Java code that loops through, retrieving (prob-
ably with Java code) and displaying each one. But whether it’s behind the scenes
(as it is here) or in the open, where there’s code, there are sometimes bugs.

Debugging JSPs
Debugging JSPs is no different than debugging servlets, because JSPs are con-
verted into servlets and compiled. The only problem is that you can’t debug your
JSP code directly (at least, not with the Sysdeo Tomcat plug-in); you need to find
the generated Java servlet in the Tomcat work directory and work with that. For-
tunately, it’s usually easy to correlate what’s happening in the Java code with what
you wrote using JSP—especially if it’s Java code in the JSP.

 As an example, locate the file DisplayStar_ jsp.java under the work directory
in the StarList project, inside the org.apache.jsp package, and double-click on it
to open it in the editor. (You may have to refresh the project contents by right-
clicking on the project and selecting Refresh.) The first thing to notice is that the
class DisplayStar_jsp is of type HttpJspBase, which is a subclass of HttpServlet.
(You can discover this, and much more about the class, its attributes, and its meth-
ods, by right-clicking on HttpJspBase or DisplayStar_jsp and selecting Open
Type Hierarchy from the context menu.) The most interesting method in the class
is _jspService(), which is where your JSP code resides. For example, here is how
it instantiates and populates the Star object:

org.eclipseguide.astronomy.Star star = null;
synchronized (request) {
 star = (org.eclipseguide.astronomy.Star)

208 CHAPTER 7
Web development tools

 pageContext.getAttribute("star", PageContext.REQUEST_SCOPE);
 if (star == null){
 try {
 star = (org.eclipseguide.astronomy.Star)
 java.beans.Beans.instantiate(
 this.getClass().getClassLoader(),
 "org.eclipseguide.astronomy.Star");
 } catch (ClassNotFoundException exc) {
 throw new InstantiationException(exc.getMessage());
 } catch (Exception exc) {
 throw new ServletException("Cannot create bean of class "
 + "org.eclipseguide.astronomy.Star", exc);
 } pageContext.setAttribute("star", star,
 PageContext.REQUEST_SCOPE);
 }
}

One of the problems with using JSPs and servlets is that they are loosely linked.
There is nothing to guarantee that you use the same name for the Star JavaBean
in the servlet and in the JSP, for example, and no error will occur at compile time
or runtime. If the names don’t agree (perhaps because of a typo), whatever infor-
mation you enter for a Star will mysteriously be lost. (If you look at the database,
you’ll see that the information was saved there, which only deepens the mystery.)

 You may already know that the <jsp:useBean> tag creates a new instance of the
JavaBean if one with the specified identifier doesn’t already exist, but if you didn’t,
it’s apparent from this code. If you trace into it, you’ll find the call to getAt-
tribute() fails, and that a new uninitialized instance of Star is displayed instead.

Multithreaded debugging
One of the issues you need to be aware of when working with servlets is thread
safety. Tomcat only instantiates a single instance of the servlet to handle all
requests, so all requests share the same instance data and data such as attributes
in the application scope. This means two requests arriving at the servlet at the
same time can wreak havoc on each other. You can explore this situation in the
debugger by using two browser windows to send two requests to a servlet at the
same time.

 As it is, StarEntryServlet is threadsafe because the data it uses, such as the
variables star and index, are method local. To wreak a little havoc, move the
declaration of Star as follows, to make it a class instance variable:

public class StarEntryServlet extends HttpServlet
{
 Star star;

Building a web application 209

 protected void doPost(
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 ObjectManager om =
 ObjectManager.createObjectManager(Star.class);
 star = new Star();
 // etc...

Make sure you still have a breakpoint set in the first line of the doPost() method
in StarEntryServlet. Then go to the New Star entry page in your browser, enter
First star as the star’s name, and click Save. As before, the debugger in Eclipse
suspends execution when the breakpoint is reached. Now, click Step Over to
advance the cursor to the next line in the program. Notice that the Debug view
includes an entry such as Thread [Thread-5] Suspended, and that the first child
entry below it indicates that it is suspended on line 34 of the method StarEntry-
Servlet.doPost(). (Your line and thread numbers may differ, of course.)

 Open another browser window, go to the star entry page, enter Second star
as the name, and click Save. The debugger again suspends execution of this
request at the breakpoint. Notice that you now have two arrows in the left margin
of the editor, one for each suspended thread. Likewise, the Debug view shows
two suspended threads (see figure 7.10). Note that threads are assigned arbi-
trarily from a pool, so in this case the second thread is Thread-3. You can control
the execution of each thread individually by clicking on it in this view and then
clicking the debug buttons in the toolbar.

 You can easily demonstrate the problems that nonthreadsafe code can cause:

1 Place a breakpoint at the call to om.save().
2 Select the first thread, which in this case happens to be Thread-5, and

press Resume. You now have a new Star object, star, with the value of the
name attribute set to First star, which you verify in the Variables view.

3 Select the second thread, Thread-3 here, and click Resume. This assigns
a new Star object to star with the name Second star, overwriting the first.

At this point it doesn’t matter which thread you run next—both save a Star
named Second star (with different indexes, because the index is a local variable),
and the information for Second star is returned to both browsers.

 After changing the code back to the way it was originally, you can repeat the
steps and verify that this problem doesn’t occur with star as a local variable.

210 CHAPTER 7
Web development tools

7.4 Wrapping up the sample application

Before bidding adieu to the sample application you’ve been developing in this
part of the book, let’s tie up a few loose ends. You’ve seen how keys are obtained
when creating records, and you may wonder how you can get those keys to retrieve
a record. You do so by creating a method to query the data in the file. For now
you’ll implement a simple query that returns the keys for all the records in the
database, getCollection(), but in a more fully developed application you may
want to have a way to specify the criteria that data must meet to be returned.

 This is the method in FileObjectManager:

 public Collection getCollection()
 {

 Collection coll =
 FilePersistenceServices.getCollection(className);
 return (Collection) coll;
 }

Figure 7.10 Debugging multiple threads. Selecting a thread in the Debug view lets you control its
execution.

Wrapping up the sample application 211

Most of the work is done in the FilePersistenceServices class, in a correspond-
ing getCollection() method:

 public static Collection getCollection(String fileName)
 {
 Vector v = new Vector();
 try
 {
 FileReader fr = new FileReader(fileName);
 BufferedReader in = new BufferedReader(fr);
 String str;
 boolean found = false;

 while ((str = in.readLine()) != null)
 {
 v.add(new Integer(getKey(str)));
 }
 in.close();
 }
 catch (FileNotFoundException e)
 {
 v = null;
 }
 catch (IOException e)
 {
 v = null;
 }
 return v;

 }

Listing 7.6 shows the StarListServlet servlet that calls these methods to get the
star keys. Converting the collection to an array makes the JSP’s job easier.

public class StarListServlet extends HttpServlet
{
 protected void doPost(
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {

 ObjectManager om =
 ObjectManager.createObjectManager(Star.class);
 Collection starCollect = om.getCollection();
 if (starCollect != null)
 {
 Integer[] starKeys =
 (Integer[]) starCollect.toArray(new Integer[0]);
 request.setAttribute("starKeys", starKeys);

Listing 7.6 StarListServlet.java

212 CHAPTER 7
Web development tools

 }
 RequestDispatcher dispatcher =
 getServletContext().getRequestDispatcher("/ListStars.jsp");
 dispatcher.forward(request, response);
 }

 protected void doGet(
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 doPost(request, response);
 }

}

You could use these keys to look up and display each star on a JSP. But instead,
you’ll display the names and let the user use a radio button to select a star he
wants to learn more about (see figure 7.11).

Figure 7.11
Selecting a star
using a radio button
sets a variable to the
star’s index behind
the scenes. (Image
courtesy of NASA and
the Hubble Heritage
Team [STScl/AURA].)

Wrapping up the sample application 213

Listing 7.7 shows ListStars.jsp; note that the index of each star is stored in the radio
button’s value attribute.

<%@ include file="Header.html" %>
<%@ page import="org.eclipseguide.persistence.ObjectManager" %>
<%@ page import="org.eclipseguide.astronomy.Star" %>

<CENTER>
<FORM METHOD="POST"
 ACTION=
 "/StarList/servlet/org.eclipseguide.starlist.StarEntryServlet">

<TABLE>
<% Integer [] starList=
 (Integer [])request.getAttribute("starKeys");
 ObjectManager om =
 ObjectManager.createObjectManager(Star.class);
 boolean starsFound = true;
 if(starList!=null)
 {
%>
 <H2>Select a star</H2><P>

Select a star and press the Look up button below to see
 more information about the star. <P>

<%
 for(int i=0; i < starList.length; i++)
 {
 int index = starList[i].intValue();
 Star star = (Star) om.get(index);
 if(star != null)
 {
%>
 <TR><TD>
 <INPUT TYPE="radio" NAME="STAR_SELECTED"
 VALUE="<%= index %>">
 </TD>
 <TD>
 Name: <%= star.getName() %>
 </TD></TR>
<% }
 }
 }
 else
 {
 starsFound = false;
%>
 <H2>No stars found!</H2>
<% }

Listing 7.7 ListStars.jsp

214 CHAPTER 7
Web development tools

%>
<TR>
 <TD COLSPAN=2>
 <CENTER>
<% if(starsFound)
 {
%>
</TR>
</TABLE>
 <INPUT TYPE="SUBMIT" NAME="ACTION" VALUE="Look up">
</FORM>
<% } %>

<FORM METHOD="GET" ACTION="/StarList/Home.jsp"
 <INPUT TYPE="SUBMIT" NAME="ACTION" VALUE="Home">
</CENTER>
</BODY>
</HTML>

This JSP defies the rule we mentioned earlier about separating display logic from
business logic; but because of the need to loop through each star in preparing the
form, there’s no getting around the fact that you have to mingle the two here.
One possible remedy that would reduce (but not eliminate) this mess would be to
use custom tags, but doing so introduces additional complexity to the application.

 Notice that after the user has chosen a star, the form on this JSP calls StarEn-
tryServlet to display the information, because this servlet already has the logic
for instantiating a star and forwarding the request to a JSP to display it. You need
to change to the servlet so that it uses the ACTION parameter from the form on the
JSP to determine whether it needs to create a new star or retrieve an existing one:

 protected void doPost(
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 ObjectManager om =
 ObjectManager.createObjectManager(Star.class);
 Star star = null;
 String destPage = "/DisplayStar.jsp";
 String action = request.getParameter("ACTION");
 if (action.equals("Look up"))
 {
 try
 {
 int index =
 Integer.parseInt(
 request.getParameter("STAR_SELECTED"));

Summary 215

 star = (Star) om.get(index);
 request.setAttribute("star", star);
 }
 catch (NumberFormatException e)
 {
 }
 }
 else if (action.equals("Save"))
 {
 star = new Star();
 star.name = request.getParameter("name");
 star.catalogNumber = request.getParameter("catalogNumber");
 // etc...

Not shown here is another else clause to deal with the case in which a valid star
is not found, either because this servlet was called in error or because the user
entered its URL directly in the browser. In that case, the destination page vari-
able destPage is set to point to an error page.

 There are additional features that would be nice to implement, such as the
ability to delete a star or to edit a star’s data, but we leave them as exercises for
the reader.

7.5 Summary

In this chapter, you completed the first iteration of the sample application you
began in chapter 3, by providing a web interface that allows you to use a file-
based persistence component to store and retrieve data. There’s more that can
be done, such as adding the ability to delete and modify existing data, but the
JSPs and servlets developed in this chapter provide something you can use for
show-and-tell outside the confines of Eclipse.

 Although Eclipse comes only with support for standard Java development, its
extensibility makes possible third-party plug-ins for developing more advanced
types of projects, such as web applications. One of the important design consid-
erations for applications with GUIs is the need to separate the presentation logic
from the business logic; JSPs are good for the former, and servlets are good for
the latter.

 You can use Eclipse’s basic text editor to edit JSPs (and HTML and XML docu-
ments), but a number of other plug-ins add more features. We mentioned XML-
Buddy, but you can also find more plug-ins by visiting the Eclipse Community
page at http://www.eclipse.org/community.

 JSPs and servlets are not standalone Java applications; they need to run in the
context of a servlet container. In this chapter we also looked at the Sysdeo Tomcat

Leaves
star==null

216 CHAPTER 7
Web development tools

plug-in for developing applications inside Eclipse using the popular and free
Tomcat servlet container. As you saw, the Sysdeo plug-in conveniently lets you
start and stop the Tomcat server using tool buttons in Eclipse’s main toolbar.
More importantly, however, it lets you debug the web application using Eclipse’s
powerful, multithread-aware debugger.

 Whether you choose to undertake the next iteration of the sample application
is up to you, but we hope this first part of the book has provided a thorough and
useful introduction to the tools you need to use Eclipse effectively for this—or
better yet, your own—Java project.

Part 2

Extending Eclipse

Now that you’re comfortable using Eclipse for Java and web development,
the second part of this book will introduce you to Eclipse’s extensible plug-in
architecture. Using this architecture, you can extend Eclipse with your own cus-
tom functionality, including support for other languages. Chapter 8 intro-
duces plug-ins and walks you through the process of building simple ones with
the Plug-In Development Environment provided by Eclipse. Then, chapter 9
probes deeper by taking you through a complete plug-in for log4j integration,
including an editor, viewer, and properties pages.

219

8Introduction
to Eclipse plug-ins

In this chapter…
■ Understanding Eclipse’s plug-in architecture
■ Preparing your Workbench for plug-in

development
■ Using the Plug-in Development Environment

(PDE)
■ Creating simple plug-ins using the built-in

wizards and templates

220 CHAPTER 8
Introduction to Eclipse plug-ins

Up to now, you’ve been using Eclipse as it comes out of the box. As you’ll discover
in this chapter, however, the beauty of Eclipse lies in its extensible architecture.
This architecture allows anyone to add features and capabilities the original
designers never dreamed of.

 Eclipse’s loosely connected design is perfect for systems that aren’t designed
all at once, but instead are built up from components written for particular needs.
From its earliest roots, Eclipse was designed as an “open extensible IDE for any-
thing, and nothing in particular.” The decentralization that plug-ins provide gives
the Eclipse Platform the ability to morph into any application and support any
language. Come with us now as we seek out that man behind the curtain and learn
the secrets of Eclipse plug-ins.

8.1 Plug-ins and extension points

Imagine a giant jigsaw puzzle. A few pieces are already connected for you—these
will form the core around which the rest of the puzzle is built. The boundaries
between the pieces are uniquely cut to fit snugly together. If Eclipse is the puzzle,
then the pieces are plug-ins. A plug-in is the smallest extensible unit in Eclipse. It
can contain code, resources, or both.

 The Eclipse Platform consists of nearly 100 plug-ins working together. The
boundaries between these pieces that let plug-ins connect to one another are
called extension points. An extension point is the mechanism by which one plug-in
can add to the functionality of another.

 Appendix C lists the extension points provided by the Platform. Each one can
be used to add some new component such as a menu or view to the system, and
is usually associated with a Java class that performs the logic for the component.

 Unlike most jigsaw puzzles, though, Eclipse has no corners or straight edges.
It can be extended forever, with each new plug-in defining its own extension points
that other plug-ins can use. Large projects such as WebSphere Studio have hun-
dreds of plug-ins. (Better bring a big table.)

8.1.1 Anatomy of a plug-in

Plug-ins are conceptually simple. If you look at the directory where you installed
Eclipse in chapter 2, you will see a subdirectory called plugins. Inside this direc-
tory you’ll find one directory for every plug-in. The name of each directory is the
same as the name of the plug-in, followed by an underscore and a version num-
ber. For example:

Plug-ins and extension points 221

C:\ECLIPSE
|
+---features
+---plugins
| +---org.eclipse.ant.core_2.1.0
| | | .options
| | | about.html
| | | antsupport.jar
| | | plugin.properties
| | | plugin.xml
| | |
| | +---lib
| |
| +---org.eclipse.compare_2.1.0
| |
| ...
+---workspace

The org.eclipse.ant.core plug-in provides the Eclipse Platform with its inte-
gration with the Ant builder (see chapter 5). In every plugins folder, including
this one, you will find a plug-in manifest file (plugin.xml) together with some
optional files. The manifest describes the plug-in—its name, its version number,
and so forth. It also lists the required libraries and all the extension points used
and defined by the plug-in.

 The files and folders typically seen in a plugins folder are as follows:
■ plugin.xml—Plug-in manifest
■ plugin.properties—Contains translatable strings referenced by plugin.xml
■ about.html—Standard location used for licensing information
■ *.jar—Any Java code needed for the plug-in
■ lib—Directory for more JAR files
■ icons—Directory for icons, usually in GIF format
■ (other files)—As needed

8.1.2 The plug-in lifecycle

When you first start the Eclipse Platform, it scans the plugins directory to dis-
cover what plug-ins have been defined (this is a slight simplification, but close
enough for this discussion). If it finds more than one version of the same plug-in,
only one (typically the one with the highest version number) will be used. The
list of plug-ins the Platform builds during this scan is called the plug-in registry.
Although the Platform reads all the plug-in manifests, it doesn’t actually load the

222 CHAPTER 8
Introduction to Eclipse plug-ins

plug-ins (that is, run any plug-in code) at this point. Why? To make Eclipse start
up faster.

 Plug-ins are loaded only when they are first used. For example, if you write a
plug-in that defines a menu item, Eclipse can tell by looking at the manifest
where the menu should go and what the text of the menu is. Because of the
information in the manifest, Eclipse can delay loading your plug-in until it is
really needed.

 If you select the menu, the plug-in is loaded at that point. This behavior is
especially important in large Eclipse-based products with hundreds of plug-ins.
Most of the plug-ins will not be needed, because they are in specialized parts of
the product that may never be run. So, any time spent loading and initializing
those plug-ins would be wasted. This is sometimes referred to as lazy loading.

 When are plug-ins unloaded? The short answer is, never. However, one of the
goals of the Equinox project (http://www.eclipse.org/equinox) is to allow plug-ins
to be loaded and unloaded on demand, so this situation may change in the
future.

8.1.3 Creating a simple plug-in by hand

Eclipse plug-ins can be created without any special tools. To demonstrate, create
a subdirectory in the plugins directory called org.eclipseguide.simpleplugin_1.0.0.
Inside this directory, use a text editor like Notepad or vi to create a plugin.xml
file containing the following lines:

<?xml version="1.0" encoding="UTF-8"?>
<plugin
 id="org.eclipseguide.simpleplugin"
 name="Simple Plug-in"
 version="1.0.0"
 provider-name="Eclipse in Action">
</plugin>

Now save the file and restart Eclipse. You won’t notice anything different,
because this plug-in doesn’t do anything. However, you can tell it was registered
by selecting Help→About Eclipse Platform and then clicking Plug-in Details.
Scroll down to the bottom of this window, and you’ll see the plug-in listed as
shown in figure 8.1. The More Info button is grayed out because you didn’t cre-
ate an about.html file.

 Table 8.1 describes the purpose of each line in plugin.xml.
 Congratulations—you have just created your first plug-in! Next we’ll look at

the tools Eclipse provides to make this process manageable for more complex
projects.

The Plug-in Development Environment (PDE) 223

8.2 The Plug-in Development Environment (PDE)

Creating a plug-in by hand is an interesting exercise, but it would quickly
become tedious in practice. Plug-in manifests can grow to be hundreds of lines
long, and they need to be coordinated with names and data in various source
and property files. Also, plug-ins need a fair amount of boilerplate code in order
to run. That’s why Eclipse provides a complete Plug-in Development Environ-
ment (PDE). The PDE adds a new perspective and several views and wizards to
the Eclipse Platform to support creating, maintaining, and publishing plug-ins:

■ Plug-in Project—A normal plug-in; the most common type
■ Fragment Project—An addition to a plug-in (for languages, targets, and so on)
■ Feature Project—An installation unit for one or more plug-ins
■ Update Site Project—A web site for automatic installs of features

Table 8.1 The plug-in manifest file (plugin.xml) for each plug-in is read when Eclipse starts, in order
to build up its plug-in registry. Here is the simplest manifest possible and the meaning of each line.

Line Purpose

<?xml version="1.0" encoding="UTF-8"?> Required XML prolog; never changes

<plugin Starts defining a new plug-in

 id="org.eclipseguide.simpleplugin" Provides the fully qualified id for the plug-in

 name="Simple Plug-in" Gives the plug-in a human-readable name

 version="1.0.0" Specifies a version number

 provider-name="Eclipse in Action"> Provides information about the author

</plugin> Finishes defining the plug-in

Figure 8.1 In the About page, you can click the Plug-in Details button to see the list of
installed plug-ins. The Simple Plug-in shown here was discovered by the Eclipse Platform
during startup.

224 CHAPTER 8
Introduction to Eclipse plug-ins

8.2.1 Preparing your Workbench

Before you start using the PDE, you should turn on a few preferences. They are off
by default, because Eclipse users who are not building plug-ins don’t need them.
Bring up the Preferences window (Window→Preferences) and do the following:

1 Select Workbench→Label Decorations and turn on the Binary Plug-in
Projects decoration. This is optional, but if you use binary plug-ins (see
section 8.2.2) it will help them stand out from the rest of your projects.

2 Select Plug-In Development→Compilers and set all the messages to Warn-
ing. Doing so will provide an early indication of any problems in your
plug-in manifests.

3 Select Plug-In Development→Java Build Path Control and turn on the
Use Classpath Containers for Dependent Plug-ins option. This confus-
ingly named option causes all plug-in JARs that your plug-in uses to
appear in a folder of your project called Required Plug-in Entries. The
nice thing about this special folder is that Eclipse dynamically manages it
based on your plug-in’s dependencies.

4 Click OK. A dialog will appear, stating that the compiler options have
changed and asking whether you would like to recompile all the projects.
Click Yes.

8.2.2 Importing the SDK plug-ins

As mentioned earlier, the Eclipse Platform is made up of dozens of plug-ins.
Wouldn’t it be nice if you could see the source code for all those plug-ins, and do
searches to see how certain classes and interfaces are used internally? The API
documentation is not perfect, so this is an important tool for plug-in developers.
Of course, you could connect to the Eclipse CVS Repository (host dev.eclipse.org,
path /home/eclipse, user anonymous) and download what you need, but there is
a better way. It turns out that if you downloaded the Eclipse Platform SDK then
all the source code is already installed, just waiting to be used.

 The easiest method is to hold down the Ctrl key and hover your mouse over
a class or object name in the Java editor, and then click on the name. If the
source is available, Eclipse will open it. Or, using the Package Explorer, you can
expand just about any JAR file and double-click on one of its class files to open it
in the editor.

 Sometimes, though, it’s more convenient to bring these plug-ins into your
workspace just like your regular projects. For example, you can search your

The Plug-in Development Environment (PDE) 225

entire workspace for references to a type, but if the type is not currently in the
workspace, then it won’t be found. The Required Plug-in Entries folder is
searched, but it contains only the JAR files from plug-ins you are currently
dependent on.

 To bring installed plug-ins into your workspace, select File→Import→Exter-
nal Plug-ins and Fragments and then click Next (see figure 8.2). Turn off the
option to Copy Plug-in Contents into the Workspace Location and click Next.
Then, select the plug-ins you want to import and click Finish. This is called a
binary import, and projects created this way are binary plug-ins because you didn’t
build them from source.

 Later, if you decide you don’t want them in your workspace, just delete
them—doing so will not affect the Eclipse installation. You can also temporarily

Figure 8.2 You can bring any installed plug-ins into your workspace by
importing them. Doing so creates a binary plug-in project for each one and
makes them available for searching and browsing. This is a great way to
discover how the Eclipse Platform uses the Eclipse SDK classes and
interfaces.

226 CHAPTER 8
Introduction to Eclipse plug-ins

hide them from the Package Explorer menu: Select Filters, turn on the option to
Exclude Binary Plug-in and Feature Projects, and click OK.

8.2.3 Using the Plug-in Project Wizard

The PDE makes it easy to create a new plug-in by providing wizards that ask a
few questions and generate much of the code for you. Let’s walk through a sim-
ple example:

1 Select File→New→Project to bring up the familiar New Project Wizard
shown in figure 8.3.

2 Select Plug-in Development on the left-hand side to bring up the list of
plug-in wizards on the right. You can use the Plug-in Project Wizard to
create new plug-ins; select it and then click Next to open the first page of
the wizard.

3 Enter a name for the plug-in, such as org.eclipseguide.helloplugin (see
figure 8.4). We recommend using a fully qualified name like this so it can
match the plug-in name and not collide with anyone else’s name. By
default, the PDE creates the plug-in in your normal workspace directory
(either the workspace directory where you installed Eclipse or the direc-
tory you specified with Eclipse’s -data option). Click Next to get to the
next page.

4 Enter the fully qualified ID of the plug-in (see figure 8.5); by default, the
ID is the same as the project name, which is what you want. Select the
Create a Java Project option. Some plug-ins consist of only resources,

Figure 8.3
The PDE provides several
wizards for creating new
projects. See section 8.2 for
a description of each type of
project supported.

The Plug-in Development Environment (PDE) 227

such as a plug-in that only contains help files, but most of the time plug-
ins have some Java code associated with them. The Java Builder Output
option controls where the Eclipse compiler places generated .class files.
The Plug-in Runtime Library is the JAR file that holds all your Java code,
and Source Folder allows you to change the subdirectory that contains
your .java files. The defaults for these settings are fine, so click Next to
bring up the code generation page.

Figure 8.4
Specify the name and location
of the project in the first page
of the Plug-in Project Wizard.

Figure 8.5
Specify the fully qualified ID of
the plug-in in the second page
of the New Plug-in Project
Wizard. You can also control
whether this plug-in will contain
Java code.

228 CHAPTER 8
Introduction to Eclipse plug-ins

5 The PDE provides several standard templates to help you quickly create
some common kinds of plug-ins. A few are listed on this page (figure 8.6);
you can see the rest by selecting the Custom Plug-in Wizard. The option
to Create a Blank Plug-in Project makes a minimal directory with a plu-
gin.xml file but not much else; no code is generated. The Default Plug-in
Structure Wizard creates a top-level Java class for you but does not use
any extension points. It is possible to add new templates, if necessary.

You’re almost done. Now you just have to decide which template to use.

8.3 The “Hello, World” plug-in example

It’s time for another “Hello, World” example—this one for plug-ins. In the New
Plug-in Project page, select the Hello, World Wizard. It creates the default plug-
in structure and also uses two extension points (org.eclipse.ui.actionSets and
org.eclipse.ui.perspectiveExtensions) to add an item to the menu bar and the
tool bar. (These extension points and the other wizards will be discussed later).
Now, follow these steps:

1 In the code-generation dialog, click Next to start the Hello, World Wizard.
Set the Plug-in Name to Hello Plug-in, the Class Name to org.eclipse-

Figure 8.6
Select a code-generation
wizard to quickly create a new
plug-in from a template. Using
the templates lessens the
learning curve for Eclipse
extensions and is less error-
prone than creating the code
from scratch. There also is an
experimental feature in Eclipse
2.1 for adding your own wizards
to this dialog.

The “Hello, World” plug-in example 229

guide.helloplugin.HelloPlugin, and the Provider Name to Eclipse in
Action (see figure 8.7). The next page would let you control the text the
example will display; however, the defaults are good, so click Finish to
generate the directories, files, and classes necessary for the project.

2 You may get a dialog telling you that the wizard is enabling any needed
plug-ins (figure 8.8). This is normal, so click OK.

3 Another dialog asks if you want to switch to the Plug-in perspective (fig-
ure 8.9). Click Yes.

That’s it! You now have a plug-in project, as shown in figure 8.10.

Figure 8.7
This page is common to most
plug-in wizards. Use it to fill in
the plug-in name and other
required data.

Figure 8.8
The wizard automatically
enables plug-ins that this plug-
in depends on. You can see the
list of enabled plug-ins in the
Preferences dialog under Plug-
In Development→Target
Platform.

230 CHAPTER 8
Introduction to Eclipse plug-ins

8.3.1 The Plug-in Manifest Editor

The PDE automatically opens the Plug-in Manifest Editor when you first create a
plug-in (see figure 8.11). You can bring it up later by double-clicking on plu-
gin.xml. This multipage editor provides convenient access to all the different
sections of the plugin.xml file.

 Because you’ll be spending a great deal of time in the Plug-in Manifest Edi-
tor, it’s a good idea to familiarize yourself with it now. Its pages are as follows:

■ Welcome—A quick introduction to the Manifest Editor with links to some of
the most important sections. You can turn off this page once you are famil-
iar with the editor.

■ Overview—Summarizes the plug-in, including the name, version number,
extension points consumed and provided, and other information. This is
the page you will use most often.

■ Dependencies—Specifies the plug-ins required for this plug-in.
■ Runtime—Defines the libraries that need to be included in the plug-in’s

classpath and whether classes in those libraries should be exported for use
by other plug-ins.

Figure 8.9
Plug-in development is best
accomplished in the Plug-in
perspective. This is optional,
however; you can use any
perspective you like, as long as
it has the views you need.

Figure 8.10
The final result is a plug-in
project that prints “Hello,
World”. Here we have
expanded some of the
folders so you can see the
generated files.

The “Hello, World” plug-in example 231

■ Extensions—Lists all extension points used by this plug-in.
■ Extension Points—Lists all extension points defined by this plug-in, along

with a cross-reference of who is using those extension points.
■ Source—A raw XML editor for the plugin.xml file. Often it is useful to make

a change in one of the other pages of the editor and then switch to the
Source page to see what effect the change had.

8.3.2 The Run-time Workbench

Once you have created a plug-in project, you could compile it, package up a JAR
file, copy it to the plugins directory as you did in section 8.1.3, and restart
Eclipse. But the PDE provides an easier way in the form of the Run-time Work-
bench, a temporary Eclipse installation created automatically for running and
debugging plug-ins.

 To run your new plug-in under the Run-time Workbench, select Run→Run
As→Run-time Workbench (or use the Run toolbar button). If you haven’t done
this before, then you will get a notice that Eclipse is completing a new installa-
tion, and then a new Eclipse Workbench will appear. This is the Run-time Work-
bench; it includes all the plug-in projects you are working on in addition to the
plug-ins that are part of the standard Eclipse installation. If you look carefully,
you will notice a new menu named Sample Menu and a new button in the Eclipse
toolbar (see figure 8.12).

 Click the button, and Eclipse opens a dialog commemorating your second
plug-in (see figure 8.13). We’ll look at the Java code behind that button shortly.

Figure 8.11
When you first open the
plugin.xml file, you are
greeted with this
Welcome screen. It
contains hints about
how to work with the
project, active links to
different pages in the
Plug-in Manifest Editor,
and actions like starting
the Run-time Workbench.
You can turn off the page
when you become more
comfortable with the
environment.

232 CHAPTER 8
Introduction to Eclipse plug-ins

Debugging a plug-in is just as easy. Select Run→Debug As→Run-time Workbench.
A second Eclipse Workbench starts up, containing your plug-ins. Debug this as
you would any Java application (see chapter 3).

NOTE If you are using JDK 1.4 or higher, you can make small changes to your
source code and rebuild, and the changes will be instantly available in
the Run-time Workbench. This is called hot-swapping or hot code replace.
Substantial changes (such as adding a new class) may cause a warning to
be displayed. If you get this warning, simply close the Run-time Work-
bench and run it again.

Figure 8.12 Starting the Run-time Workbench opens a new instance of Eclipse with all
the plug-ins from your workspace installed. The “Hello, World” plug-in adds a Sample
Menu and a toolbar button to the Workbench.

Figure 8.13
This dialog appears when you
click the new toolbar button of
the “Hello, World” plug-in.

The “Hello, World” plug-in example 233

SIDEBAR Eclipse is self-hosted, which means it is used to develop itself. The concept
of self-hosting got its start in compiler technology. The first version of a
compiler is written in a simpler language, such as assembler, or perhaps
using a competitor’s product. But once the compiler is working, the de-
veloper rewrites it in the language being compiled, using the first ver-
sion to build the second version, the second version to build the third,
and so forth. Eclipse developers use Eclipse the same way, and created its
plug-in development environment to support this process.

Compilers, being fairly complex programs in their own right, make
excellent test cases for compilers. Likewise, by writing Eclipse with Eclipse,
the developers can discover and correct any shortcomings in the han-
dling of large projects and optimize the environment for extending the
Eclipse Platform.

8.3.3 Plug-in class (AbstractUIPlugin)

The Hello, World Wizard created three files for you: a plug-in manifest (plugin.xml)
and two source files (HelloPlugin.java and SampleAction.java). Because all
Eclipse plug-ins and extensions follow this pattern (references in the XML file
with Java classes to back them up), it’s important to understand how it works.
Open the Plug-in Manifest Editor and select the Overview page (figure 8.14).

XML
Switch to the Source page. You should see something like this:

<plugin
 id="org.eclipseguide.helloplugin"
 name="Hello Plug-in"
 version="1.0.0"
 provider-name="Eclipse in Action"
 class="org.eclipseguide.helloplugin.HelloPlugin">
...
</plugin>

Note that the link to the code is provided by the class attribute. When the plug-
in is activated, this class will be instantiated and its constructor called.

Java
The class that backs up the plug-in definition in the manifest is HelloPlugin,
contained in the source file HelloPlugin.java (see listing 8.1). In this section,
we’ll examine this code and explain how all the pieces fit together.

234 CHAPTER 8
Introduction to Eclipse plug-ins

package org.eclipseguide.helloplugin;

import org.eclipse.ui.plugin.*;
import org.eclipse.core.runtime.*;
import org.eclipse.core.resources.*;
import java.util.*;

/**
 * The main plugin class to be used in the desktop.
 */
public class HelloPlugin extends AbstractUIPlugin
{
 //The shared instance.
 private static HelloPlugin plugin;
 //Resource bundle.
 private ResourceBundle resourceBundle;

 /**

Listing 8.1 Java class for the “Hello, World” plug-in

Figure 8.14 The Overview page of the Plug-in Manifest Editor is the central control
panel for your plug-in. From here you can get a summary of the plug-in at a glance and
access the other pages for more detail.

Package
name

 B

Plug-in
class

 C

Singleton
instance

 D

The “Hello, World” plug-in example 235

 * The constructor.
 */
 public HelloPlugin(IPluginDescriptor descriptor)
 {
 super(descriptor);
 plugin = this;
 try
 {
 resourceBundle =
 ResourceBundle.getBundle(
 "org.eclipseguide.helloplugin.HelloPluginResources");
 }
 catch (MissingResourceException x)
 {
 resourceBundle = null;
 }
 }

 /**
 * Returns the shared instance.
 */
 public static HelloPlugin getDefault()
 {
 return plugin;
 }

 /**
 * Returns the workspace instance.
 */
 public static IWorkspace getWorkspace()
 {
 return ResourcesPlugin.getWorkspace();
 }

 /**
 * Returns the string from the plugin's resource bundle,
 * or 'key' if not found.
 */
 public static String getResourceString(String key)
 {
 ResourceBundle bundle =
 HelloPlugin.getDefault().getResourceBundle();
 try
 {
 return bundle.getString(key);
 }
 catch (MissingResourceException e)
 {
 return key;
 }
 }

 /**

Plug-in
constructor

 E

Get a resource
bundle

 F

Return
Workspace
handle

 G

Look up key
in resource
bundle

 H

236 CHAPTER 8
Introduction to Eclipse plug-ins

 * Returns the plugin's resource bundle,
 */
 public ResourceBundle getResourceBundle()
 {
 return resourceBundle;
 }
}

The package name should be the same as the plug-in name, which should be the
same as the project name. Packages in the Eclipse Platform start with org.eclipse.
Although the convention is not always followed, user interface packages gener-
ally have ui in their name, and non–user interface packages include core. If you
see a package with internal in the name, it is not intended to be used outside
the package itself. Internal packages and interfaces can, and often do, change
between releases (and even builds of the same release), so stay clear of them.
This is where the plug-in class is created. There are two types of plug-ins: those
with user interfaces and those without. AbstractUIPlugin is the base class for all
UI type plug-ins, and Plugin is the base class for the rest.
A Singleton pattern is used to ensure there will be only one instance of the plug-
in’s class.
The plug-in’s constructor is passed an IPluginDescriptor object, which has
methods such as getLabel() that return information from the plug-in registry.
You can get a reference to this descriptor later by using the getDescriptor()
method. Note that all Eclipse interfaces begin with the letter I.
See the name of the bundle in the getBundle() call? Once created, the properties
file for this bundle goes in your org.eclipseguide.helloplugin project and is named
HelloPluginResources.properties. You can manage it by hand or by using the Exter-
nalize Strings Wizard (Source→Externalize Strings).
The IWorkspace interface is the key to the Eclipse Platform’s resource manage-
ment. It has methods to add, delete, and move resources; most important, it has
the getRoot() method to return the workspace root resource, the parent of all the
projects in the workspace. This is a Singleton object (only one in the system).
The wizard has created a standard Java resource bundle for you to look up natu-
ral language strings. For example, to get the translated string for a greeting, you
could call the method HelloPlugin.getResourceString("%greeting").

 Actually, two bundles are at work. The first one is associated with the plug-in
externally and may be referenced in the plug-in manifest, plugin.xml. Properties
for the external bundle are kept in the file plugin.properties. Generally speak-

 B

 C

 D

 E

 F

 G

 H

The “Hello, World” plug-in example 237

ing, you will never use that one in the plug-in code. The second bundle, refer-
enced here, is internal to the plug-in and is kept in the plug-in’s JAR file.

8.3.4 Actions, menus, and toolbars
(IWorkbenchWindowActionDelegate)

An action is the non–user interface part of a command that can be run by a user,
usually associated with a UI element like a toolbar button or menu. Actions are
referenced in the plug-in manifest and defined as Java classes. Figure 8.15 shows
what this extension looks like in the manifest editor’s Extensions page.

 You will probably find using the Extensions page more convenient and less
error-prone than editing the XML in the Source page. However, because XML is
a more compact representation than a series of screenshots of property pages, we
will show the raw XML for most examples in this chapter and the next. Keep in
mind, though, that there is a one-to-one correspondence between the two. Also,
you can switch back and forth between the pages of the manifest editor at any
time; a change in one is reflected in all the others.

XML
The first extension defined by the plug-in is an action set. An action set is a menu,
submenu, or draggable group of toolbar buttons that appears in the user interface.

Figure 8.15
You can use the Extensions
page of the Plug-in Manifest
Editor to add new extensions
to your plug-in. Properties and
their values are viewed and
modified through the
Properties view. Required
properties such as id and
label are marked with an
icon. If you prefer, you can
edit the raw XML
representation in the Source
page.

238 CHAPTER 8
Introduction to Eclipse plug-ins

Listing 8.2 shows the definition in the plug-in manifest (compare this to fig-
ure 8.15).

<extension point="org.eclipse.ui.actionSets">
 <actionSet
 label="Sample Action Set"
 visible="true"
 id="org.eclipseguide.helloplugin.actionSet">
 <menu
 label="Sample &Menu"
 id="sampleMenu">
 <separator
 name="sampleGroup">
 </separator>
 </menu>
 <action
 label="&Sample Action"
 icon="icons/sample.gif"
 class="org.eclipseguide.helloplugin.actions.SampleAction"
 tooltip="Hello, Eclipse world"
 menubarPath="sampleMenu/sampleGroup"
 toolbarPath="sampleGroup"
 id="org.eclipseguide.helloplugin.actions.SampleAction">
 </action>
 </actionSet>
</extension>

Each extension, and indeed just about everything in the plug-in manifest, has a
fully qualified ID that, by convention, starts with the plug-in ID. It doesn’t matter
what you call these IDs, as long as you pick unique names.
Of course, there are exceptions, such as menus. They typically use short names
like group1 to achieve some level of consistency between menus. For example, a
File menu might have a group1 section and a Windows menu might also have a
group1 section.
Menus can contain groups and separators. Separators are simply groups that are
drawn with thin lines between them. All menus have a section named additions,
which is the default place new items are added if you don’t specify a location.
This particular menu has two levels: sampleMenu (the parent menu) and sample-
Group (the child group).
As with plug-ins, the class property points to the code.

Listing 8.2 The actionSet extension

Fully qualified
unique ID

 B

Menu ID need
not be unique

 C

Placeholder for
items/submenus

 D

Points
to code

 E

Adds action to menu bar F

Adds action
to toolbar

 G

 B

 C

 D

 E

The “Hello, World” plug-in example 239

The menubarPath property indicates the action is being added to a menu bar (in
this case, the top-level bar of the Workspace). The paths look like directories,
going from higher-level parent menus or groups to lower-level child ones.
The toolbarPath property indicates that this action is also being added to a tool-
bar. There is one toolbar called Normal, but the name is usually omitted from
the path.

Java
Now let’s move over to the Java side and dig into the code for the SampleAction
class, shown in listing 8.3.

package org.eclipseguide.helloplugin.actions;

import org.eclipse.jface.action.IAction;
import org.eclipse.jface.viewers.ISelection;
import org.eclipse.ui.IWorkbenchWindow;
import org.eclipse.ui.IWorkbenchWindowActionDelegate;
import org.eclipse.jface.dialogs.MessageDialog;

/**
 * Our sample action implements workbench action delegate.
 * The action proxy will be created by the workbench and
 * shown in the UI. When the user tries to use the action,
 * this delegate will be created and execution will be
 * delegated to it.
 * @see IWorkbenchWindowActionDelegate
 */
public class SampleAction implements IWorkbenchWindowActionDelegate
{
 private IWorkbenchWindow window;
 /**
 * The constructor.
 */
 public SampleAction()
 {
 }

 /**
 * The action has been activated. The argument of the
 * method represents the 'real' action sitting
 * in the workbench UI.
 * @see IWorkbenchWindowActionDelegate#run
 */
 public void run(IAction action)
 {
 MessageDialog.openInformation(
 window.getShell(),

 F

 G

Listing 8.3 The SampleAction class

JFace and
UI imports

 B

Code
pointed to

by manifest

 C

Main
Workbench
window

 D

Perform
action

 E

Open
dialog

 F

240 CHAPTER 8
Introduction to Eclipse plug-ins

 "Hello Plug-in",
 "Hello, Eclipse world");
 }

 /**
 * Selection in the workbench has been changed. We
 * can change the state of the 'real' action here
 * if we want, but this can only happen after
 * the delegate has been created.
 * @see IWorkbenchWindowActionDelegate#selectionChanged
 */
 public void selectionChanged(
 IAction action,
 ISelection selection)
 {
 }

 /**
 * We can use this method to dispose of any system
 * resources we previously allocated.
 * @see IWorkbenchWindowActionDelegate#dispose
 */
 public void dispose()
 {
 }

 /**
 * We will cache window object in order to
 * be able to provide parent shell for the message dialog.
 * @see IWorkbenchWindowActionDelegate#init
 */
 public void init(IWorkbenchWindow window)
 {
 this.window = window;
 }
}

JFace is a high-level wrapper on top of the Standard Widget Toolkit (SWT) used
for the Eclipse UI. JFace deals in concepts like dialogs and viewers, whereas SWT
deals in windows, canvases, and buttons. (For more details on SWT and JFace, see
appendixes D and E.)
A proxy stands in for an object until the real object is available. In this case, there
is a proxy for the toolbar button (not seen here) created by the Workbench based
solely on the information in the plug-in manifest. Remember that the plug-in
(including this code) isn’t even loaded until after the button is clicked. When the
user finally clicks the button, this delegate is created and passed the action to run.
It works just like a relay race. The first runner is the proxy, and the baton he car-

Can be used
to free system
resources

 G

 B

 C

The “Hello, World” plug-in example 241

ries is the action. The baton is passed to the second runner, the delegate, who
finishes the race.

 Because the “Hello, World” button is in the Workbench toolbar and the menu
item is in the main Workbench menu, this code implements the Workbench win-
dow action delegate interface. There are similar interfaces for View, Editor, and
Object action delegates, which are all based on IActionDelegate. IActionDele-
gate only has two methods—run() and selectionChanged()—which you will
implement a little further down in this class.
IWorkbenchWindow is an interface used for the top-level window of the Workbench.
It contains a collection of IWorkbenchPages that in turn hold all the views, editors,
and toolbars. Some common methods you’ll use in IWorkbenchWindow include
close() and getWorkbench().
The run() method is where the actual work gets done. The IAction interface has
methods for getting and setting the user interface style of the button or menu it
is associated with, and maintains a list of listeners that are called when any of its
properties change.
MessageDialog is one of a group of JFace utility classes that perform common
operations. The static method openInformation(), as you might guess, opens an
information dialog (as opposed to an error, warning, question, or other type of
dialog). Its first argument is a shell, which is a low-level SWT window. (You’ll find
that many classes have a getShell() method, and you will use it often.) The
openInformation() method’s second argument is the title of the dialog that will
be shown, and the final argument is the text that will be displayed on the main
area of the dialog.
Because SWT works more closely to the underlying window system than other APIs
(notably Swing), it is sometimes necessary to free up system resources in dis-
pose() methods that are explicitly called. Garbage collection cannot be relied on
for this purpose because it is run at unpredictable times. This is one of the more
controversial requirements of SWT, but it is not as painful as you might think.

8.3.5 Plug-ins and classpaths

One “gotcha” that continues to bite plug-in developers (new and old alike) is the
way plug-in classpaths work. Plug-ins can only use classes exported by other plug-
ins. For security reasons, plug-ins ignore the normal classpath settings at runt-
ime, causing ClassNotFound exceptions even when the code compiled just fine.

 Because of this restriction, if you want to use an external JAR file (one that is
not in your workspace) inside a plug-in, you must bring it into your workspace.

 D

 E

 F

 G

242 CHAPTER 8
Introduction to Eclipse plug-ins

Typically you do so by wrapping the JAR file in its own plug-in and making any
other plug-ins that need the library depend on the new plug-in. The Eclipse
Platform includes many examples, such as the org.junit, org.apache.ant, and
org.apache.xerces plug-ins, which are simple wrappers around the JUnit, Ant,
and Xerces libraries, respectively.

 Wrapping a JAR file is one of the simplest plug-ins you can create, because no
code is involved. The next example walks you through the necessary steps.

8.4 The log4j library plug-in example

As you recall from chapter 3, log4j is a free logging API created for the Apache
Jakarta project. When you wanted to use it in a normal Java program from within
Eclipse, you created a classpath variable for it and then referenced that variable
inside the Java Build Path for the project. But let’s say you need to use the library
inside a plug-in, so you need to create a wrapper plug-in for it. To create the wrap-
per for log4j, start with a blank template from the New Plug-in Project Wizard:

1 Select File→New→Project to bring up the New Project Wizard (figure 8.3).
2 Select the Plug-in Project Wizard and click Next to open the New Plug-in

Project Wizard.
3 Enter the name for the plug-in, org.apache.log4j, and click Next.
4 Leave the fully qualified ID as it is, making sure the option to Create a

Java Project is selected, and click Next again.
5 Select the option to Create a Blank Plug-in Project (see figure 8.6). Click

Finish to generate the plug-in.

Now, you need to customize the plug-in to contain the log4j library and include the
proper export instructions so other plug-ins can use it. To do this, follow these steps:

1 In the new project directory, delete the src directory (right-click on it and
select Delete), because there will be no source code in the project itself.

2 Copy the log4j JAR file (for example, log4j-1.2.8.jar) from the place you
installed it in chapter 3 into the top level of the project directory. To do
this, you can use File→Import→File System or, if you’re using Windows,
drag the file from your file explorer into the project.

3 Rename the JAR filename to remove the version number by right-click-
ing on it, selecting Refactor→Rename, and entering the new name,
log4j.jar. The version number is specified in the plug-in manifest and is

The log4j library plug-in example 243

appended to the plug-in directory name, so you don’t also have to
append it to the JAR filename.

4 Edit the project properties (right-click on the project and select Proper-
ties). Select Java Build Path, and then select the Libraries tab. Click Add
Jars, navigate into the project, and select log4j.jar. Click OK.

5 While still in the project properties dialog, select the Order and Export
tab. Put a check mark next to log4j.jar and click OK to save. This setting
lets other plug-ins use this library at compile time.

6 Open the Plug-in Manifest Editor (double-click on plugin.xml) and switch
to the Overview page. Set the Plug-in Name to Apache Log4J, change
the Version to match the version number of the log4j package (for exam-
ple, 1.2.8), and fill in the Provider Name with Eclipse in Action.

7 Still in the manifest editor, switch to the Runtime page. Verify that
log4j.jar is in the library list. Select it and turn on the option to Export
the Entire Library. This setting lets other plug-ins use the library at run-
time. You can also use this trick to make it look like classes from many
other plug-ins come from a single plug-in.

8 Delete the reference to the src/ folder on the Runtime page under Library
Content by right-clicking on it and selecting Delete. Again, because
you are not building the plug-in from source code, you don’t need a
source folder.

9 Switch to the Source page of the manifest editor and admire your
handiwork. When you are done, the XML in the Source page should look
like this:

<?xml version="1.0" encoding="UTF-8"?>
<plugin
 id="org.apache.log4j"
 name="Apache Log4J"
 version="1.2.8"
 provider-name="Eclipse in Action">

 <runtime>
 <library name="log4j.jar">
 <export name="*"/>
 </library>
 </runtime>
</plugin>

10 Press Ctrl-S to save, and then close the Plug-in Manifest Editor.

244 CHAPTER 8
Introduction to Eclipse plug-ins

8.4.1 Attaching source

Users of your plug-in will undoubtedly want to view log4j’s source code at some
point, perhaps while debugging or in order to understand how to use its classes.
To make that functionality available, you have to place a zip file containing the
source in the top-level directory of the plug-in (zip is used even on UNIX). In
order for Eclipse to find the zip file automatically, it must have same name as the
JAR file, but with src.zip appended to the end (for example, foosrc.zip goes with
foo.jar). In normal plug-ins, the PDE makes this file for you from your own
source code. But because you are not building the code for this library, you must
make other arrangements:

1 Create a log4jsrc.zip file containing the source. The log4j distribution
doesn’t include a source zip file, but it does have a directory containing
the source. Locate the top of the source tree in the distribution’s src/java
directory and put the org subdirectory and everything under it into the
zip using the jar utility (jar –cvf log4jsrc.zip) or your favorite zip pro-
gram, such as WinZip. When you’re done, the zip file must have an inter-
nal structure like this:

org
+---apache
 +---log4j
 +---chainsaw
 +---config
 +---helpers
 +---etc...

2 Copy the new log4jsrc.zip file into your project (using File→Import→File
System).

3 Associate the source zip to the log4j JAR file by right-clicking on log4j.jar
and selecting Properties→Java Source Attachment (see figure 8.16).
Click the Workspace button to locate the zip file. Doing so lets you view
the source in your own plug-in projects.

8.4.2 Including the source zip in the plug-in package

When the time comes to make your plug-in available for other people to use, you
need to package it in a zip file organized exactly as it should be organized under
the plugins directory. Eclipse uses the properties in build.properties to tell it
which files should be packaged and which ones should be ignored. Obviously,
you want the source zip to be included, so follow these steps:

The log4j library plug-in example 245

1 Open the Properties Editor on build.properties by double-clicking on it.
Note that you can’t edit build.properties and plugin.xml at the same
time, because the manifest editor needs to write the properties file. So if
you get an error that the file is in use or read only, close the manifest edi-
tor and try opening build.properties again.

2 Add the zip file to the bin.includes property. To do this, select the bin.
includes property on the left to display the values for that property on
the right. Click the Add button under Replacement Values and type
log4jsrc.zip. Later, when it’s time to deploy the plug-in, this property
will be used to pick which files from your project are included. Inter-
nally, bin.includes is a variable name used in an Ant script that does
the deployment.

TIP You can use Ant patterns to include many files at once. For example,
use a wildcard like *.jar to include all files ending with .jar. The pattern
** (for example, **/*.gif) matches any number of directory levels, and a
trailing slash (for example, lib/) matches a whole subtree.

3 While you’re editing the properties file, remove the source.log4j.jar
property by right-clicking on it and selecting Delete. Because there is no
source code in the project except the zip file you just imported, this
property is unnecessary. Press Ctrl-S to save. The build.properties file
should now look like figure 8.17.

Figure 8.16 Set the Java Source Attachment property on a JAR file to make its source visible in
Eclipse. The recommended method is to click the Workspace button to locate a path relative to the
workspace, as shown here.

246 CHAPTER 8
Introduction to Eclipse plug-ins

There you have it—a plug-in that wraps the log4j JAR file and that can be refer-
enced from other plug-ins. You’ll use this plug-in for the examples in chapter 9.

8.5 Deploying a plug-in

Once you’ve created a plug-in in your workspace, you can run and debug it using
the Run-time Workbench. But how do you install the plug-in or give it to some-
one else so they can install it? This process is called deployment. You can create
deployable zip files with Ant, but the PDE supplies an Export Wizard to make it
even easier. To demonstrate this process, let’s create the zip file for the log4j
library plug-in you just built:

1 Select File→Export to start the Export Wizard, and then select Deploy-
able Plug-ins and Fragments and click Next. The Export dialog shown in
figure 8.18 opens.

2 Select the plug-in(s) to export and enter the filename of the zip file you
want to create.

3 Click Finish to create the file.

Now you have a plug-in zip file that others can install.

Figure 8.17 Add the zip file containing the source to the
bin.includes property. Everything listed here will be included in
the final plug-in package when the time comes to deploy it.

Summary 247

8.6 Summary

Every component of the Eclipse Workbench—every view, every editor, every
menu—is defined in a plug-in. The Eclipse designers took great care to expose a
fully functional public API for all plug-in writers to use. Because of this even
playing field, high quality plug-ins you provide cannot be distinguished from
plug-ins that were originally part of the Platform.

 The convergence of an object-oriented polymorphic introspective language
(Java), a universal data exchange format (XML), open-source tools (Ant, JUnit),
design patterns, and agile programming techniques (such as refactoring) make
Eclipse a unique and fun environment in which to program. Wizards and templates
greatly lessen the learning curve, and the open source community built around
Eclipse provides plenty of examples (and support) for the Eclipse programmer.

Figure 8.18 You can use the Deployable Plug-ins and Fragments Wizard to create zip
files that others can install. Specify the plug-in and the name of the zip file to create
and click Finish to create the file.

249

9Working with
plug-ins in Eclipse

In this chapter…
■ Using extension points to add functionality to

Eclipse
■ Developing editors with syntax highlighting and

code assistance
■ Creating new views and pop-up menus
■ Designing tables and filling them with data

250 CHAPTER 9
Working with plug-ins in Eclipse

Every component of the Eclipse Workbench—be it a view, editor, or menu—is
defined by a plug-in. Using the plug-in architecture, you can customize Eclipse
and extend it in ways the designers never envisioned.

 Although Eclipse’s wizards can make writing plug-ins easier, an understand-
ing of the Platform APIs is essential to plug-in development. The best way to
understand it is to see it in action, so in this chapter we’ll explore a single, fairly
complex example that demonstrates the most common APIs you’re likely to use
in your own projects.

9.1 The log4j integration plug-in example

Building on the log4j library wrapper from chapter 8, the example presented in
this chapter adds log4j integration into Eclipse. To get an idea of what you need
to do, consider how the integration of Ant is accomplished:

1 A wrapper plug-in, org.apache.ant, works just like the log4j wrapper. It
contains only the Ant JAR files, which are exported in the plug-in manifest.

2 The integration plug-in, org.eclipse.ant.core (with support from the
external tools plug-in, org.eclipse.ui.externaltools), provides the
actual integration with Eclipse—the views, menus, and so forth.

Just to be clear, these are separate plug-ins: one for wrapping the open source
library and one (or more) for Eclipse integration. The latter depends on the former.

 Your first step will be to prepare a detailed requirements document and iden-
tify which user pains you want to solve with this project. Write use-case scenarios
showing how the new software will address those pains, and use a storyboard or
war-room setting to prioritize the features. After 6 to 12 months and several dozen
committee meetings, you can then start coding….

 Just kidding! In keeping with our philosophy of agile development, you would
probably start by creating a basic plug-in and add functionality a bit at a time,
testing and refactoring as you go. That is how we developed this example, but
because the process was covered in previous chapters, we’ll skip those stages and
present you with the final product.

 Figure 9.1 shows what the final plug-in looks like. The log4j integration plug-
in adds the following features to Eclipse:

■ An editor for log4j.properties files, including syntax coloring and code assis-
tance. To use this editor, simply open one of the files.

■ A view that listens on a socket for logging events and displays them in a table.
To see the view, go to the Java perspective and then select Window→Show

The log4j integration plug-in example 251

view→Log4J. To use it, specify a Socket appender with the same port used
by the view (default 4445). See listing 9.1 for an example log4j.properties file.

■ A decorator that marks all Java files currently using logging. To turn on
the decorator, select Window→Preferences→Workbench→Label Decorations,
check Log4J, and then click OK.

■ A pop-up menu item for Java files to automatically add logging to the
source code. To use this menu item, right-click on a Java file that doesn’t
already use a logger in the Package Explorer and select Add Logger.

■ Preferences pages for all the aspects of the plug-in. Select Window→Pref-
erences→Log4J to see them.

Assign appenders to root logger
log4j.rootLogger=DEBUG, mySocket

Socket appender - make sure the port number agrees with the
setting of the log4j preferences.
log4j.appender.mySocket=org.apache.log4j.net.SocketAppender

Listing 9.1 Sample log4j.properties file

Figure 9.1 The log4j integration plug-in example demonstrates many common plug-in extensions
such as syntax coloring, editors, views, tables, and pop-up menus. Full source code is available on
the book’s web site.

252 CHAPTER 9
Working with plug-ins in Eclipse

log4j.appender.mySocket.RemoteHost=localhost
log4j.appender.mySocket.LocationInfo=true
log4j.appender.mySocket.port=4445

9.1.1 Project overview

The full source code for this example is available on the book’s web site. The fol-
lowing is an overview of all the packages, classes, and interfaces that make up the
plug-in. Most of the code for the example is discussed throughout this chapter,
in the sections noted.

Package org.eclipseguide.log4j
■ Interface ILoggingEventListener (§9.3.3)—Interface for getting notifications

of new log records
■ Class Log4jPlugin (§9.5)—Main class for the plug-in
■ Class Log4jUtil—Utility functions for log and JDT manipulation
■ Class LoggingModel (§9.3.6)—Stores log records
■ Class ReceiverThread (§9.3.7)—Receives log records from the running program

Package org.eclipseguide.log4j.decorators
■ Class Log4jDecorator—Draws a special icon for classes that use logging

Package org.eclipseguide.log4j.editor
■ Class PropertiesConfiguration (§9.2.7)—Source configuration settings for

the properties editor
■ Class PropertiesDocumentProvider (§9.2.7)—Provides input for the prop-

erties editor
■ Class PropertiesEditor (§9.2.7)—Main class for the log4j properties editor
■ Class PropertiesPartitionScanner (§9.2.4)—Splits the document into par-

titions
■ Class TokenManager (§9.2.5)—Keeps track of all the colors used in the editor

Package org.eclipseguide.log4j.editor.contentassist
■ Class ConfigurationModel (§9.2.6)—Representation of the log4j settings in

the properties file
■ Class PropertiesAssistant (§9.2.6)—Content assist processor for the prop-

erties editor

The log4j integration plug-in example 253

Package org.eclipseguide.log4j.editor.scanners
■ Class CommentScanner (§9.2.4)—Parses comments into tokens
■ Class DefaultScanner (§9.2.4)—Parses property names into tokens
■ Class FormatRule (§9.2.4)—Custom parsing rule for log4j formats
■ Class ValueScanner (§9.2.4)—Parses property values into tokens
■ Class WhitespaceDetector (§9.2.4)—Helper class to tell what characters are

whitespace
■ Class WordDetector (§9.2.4)—Helper class to tell what characters are parts

of words

Package org.eclipseguide.log4j.popup.actions
■ Class AddLoggerAction—Rewrites the selected Java class to support logging

Package org.eclipseguide.log4j.preferences
■ Class EditorPreferencePage (§9.4)—Settings for the log4j.properties editor
■ Class MainPreferencePage (§9.4)—Settings for the log4j view

Package org.eclipseguide.log4j.views
■ Class Log4jView (§9.3.3)—Main class for the log4j view
■ Class TableViewPart (§9.3.4)—Helper class for views consisting of only a table
■ Class ViewLabelProvider (§9.3.5)—Returns text or icons that describe logging

records in a table

9.1.2 Preparing the project

It is not necessary to follow along in Eclipse to get the benefit of this chapter, but
if you are doing that, then you begin by creating a new project for the plug-in.
You’ll have to do this for your own plug-ins too, of course.

 You want a Java plug-in that uses the Default Plug-In Structure to provide a
stable base of functionality on which you can add your own extensions. Here are
the steps to accomplish that:

1 Select File→New→Project to bring up the New Project Wizard.
2 Select the Plug-in Project Wizard and click Next to open the New Plug-in

Project Wizard.
3 Enter the name for the plug-in, org.eclipseguide.log4j, and click Next.
4 Leave the fully qualified ID, JAR file, and so forth unchanged. Click Next.

254 CHAPTER 9
Working with plug-ins in Eclipse

5 Select the Default Plug-In Structure option. Click Next.
6 Make sure the Plug-in Name is set to Log4J Plug-in, the Version Number

is 1.0.0 (remember, this is the version of the integration plug-in and not
the log4j library itself), and the Provider Name is Eclipse in Action. Click
Finish to create the plug-in.

7 Open the Plug-in Manifest Editor (double-click on plugin.xml if it’s not
already open). Switch to the Dependencies page, click Add, and select
org.apache.log4j (the plug-in from chapter 8) in the Workspace Plug-ins
list. Doing so makes org.apache.log4j a requirement for this plug-in and
adds it to the project’s classpath. Save the manifest (press Ctrl-S).

The skeleton for the log4j integration plug-in is now complete. If you like, you
can try out the plug-in with the Run-time Workbench and verify it exists by using
Help→About Eclipse Platform.

NOTE The Run-time Workbench lists all the plug-ins you have written up to
this point. This is usually what you want, but if necessary, you can con-
trol which plug-ins are included in the Plug-ins and Fragments tab of
the Launch Configuration options (select Run→Run or Run→Debug to
edit launch configurations).

9.2 Editors (TextEditor)

The Eclipse Workbench window is made up of a number of parts. Parts can be either
editors or views. The difference between editors and views is that editors are created
from documents, they have a dirty flag, and they can be saved.

 Modifications in editors can be undone or reverted to the original input.
Views, on the other hand, display some sort of internal data structure (model), and
any modifications you make in a view are immediate and cannot be undone. Editor
inputs can only be edited in one editor part, but view models can be displayed in
any number of related view parts.

 So, the first addition to the log4j integration plug-in will be an editor for
log4j.properties files. Eclipse provides a rich framework of classes and extensions
for plug-in authors to write custom editors for any types of files. In fact, it can be
a bit overwhelming, so the Platform SDK provides two editor examples: an XML
editor and a simple Java editor. You won’t use them here, but if you’d like to take
a look, you can add the XML editor to your plug-in through the Extension Tem-
plates Wizard (edit plugin.xml, click Add on the Extensions page, select Exten-

Editors (TextEditor) 255

sion Templates, and pick Editor).The sample Java editor is part of the highly
recommended plug-in examples package available from http://www.eclipse.org.
Once it’s installed, you can read about it in the online help in the Platform Plug-
in Developer Guide under Examples Guide→Workbench→Java editor.

 One approach to learn about editors is to study these two examples (especially
the Java editor). However, in this section, we have taken the approach of creating
a simple editor from scratch and explaining each component as we go.

9.2.1 Preparing the editor class

Like most editors, the log4j.properties editor is text based, so it subclasses the
TextEditor class (which ultimately subclasses EditorPart). TextEditor takes care
of most of the mundane tasks of an editor, such as reading and writing from the
file, breaking the file into lines, insertion, deletion, cut and paste, and so forth.
The default Text editor is an unadorned instance of the TextEditor class.

 If you would like to follow along in Eclipse and create a new editor class, do this:

1 In the Package Explorer, right-click on the org.eclipseguide.log4j project
and select New→Class.

2 Use the dialog to change the Package Name to org.eclipseguide.log4j.
editor, the Class Name to PropertiesEditor, and the Superclass to org.
eclipse.ui.editors.text.TextEditor. Turn off the option to create a method
stub for main, let the other options default, and click Finish to generate
the class code.

9.2.2 Defining the editor extension

To add an extension to the plug-in for the new editor, follow these steps:

1 Open the plugin.xml manifest file and switch to the Extensions page.
Select Add to add a new extension. This will bring up the Extension Wiz-
ard (figure 9.2).

2 Select Generic Wizards and Schema-based Extension and click Next. A
schema is a definition of correct XML that can be inserted into the plug-in
manifest. There is one for every extension point; if you want to define your
own extension points, you will need to create a schema yourself. Schemas
are written in XML and have a .xsd, .mxsd, or .exsd extension.

3 On the second page (figure 9.3), select org.eclipse.ui.editors. If you
have imported the Workbench plug-ins, you may see all the extension
points twice; select the first one. No ID or Name is necessary, so click Finish.

256 CHAPTER 9
Working with plug-ins in Eclipse

To see the online help for an extension point, select it and click the Details
button. For your convenience, a list of all the supported extension points
and what they do is provided in appendix C.

NOTE If you don’t see the extension point you need, turn off the Show Only
Extension Points from the Required Plug-ins option. Doing so will show
all extension points, but you may not be able to use some of them until
you add the plug-ins they require to the Dependencies page of the Plug-
in Manifest Editor. You may also need to add them to the Target Plat-
form list (Windows→Plug-In Development→Target Platform). How can
you tell what plug-in defines what extension point? The plug-in name is
always the prefix of the extension point—for example, org.eclipse.ui
is the plug-in for org.eclipse.ui.editors.

4 You should now see the org.eclipse.ui.editors extension point listed in
your Extensions page. Right-click on it and select New→Editor. Doing so
creates an editor object under the extension with a default name like
org.eclipseguide.log4j.editor1 (see figure 9.4).

5 View the properties for the editor by double-clicking on it. Set the name
to Log4J Properties Editor and change the id to org.eclipseguide.log4j.

Figure 9.2
You can use the Extension
Wizard to add new extensions
through hand-crafted templates,
but only a few are available. For
most extensions you’ll need to
use the Generic Schema-based
Extension Wizard. An
experimental interface is
available in 2.1 for adding new
templates to this dialog. We
hope it will be officially
supported in the next version.

Editors (TextEditor) 257

editor.properties. You may need to reposition the Properties view first so
you can see it better, for example by stacking it with the Tasks view. Drag
its title bar where you want it to go.

Figure 9.3
You use this dialog to select
an extension point to use in
your plug-in. Only the
extensions that are defined
by plug-ins you depend on are
shown by default. Select an
extension point and click
Details to see its online help.

Figure 9.4
Adding the editor extension
using the Plug-in Manifest
(plugin.xml) Editor. Double-click
on any of these objects to view
the object’s properties.

258 CHAPTER 9
Working with plug-ins in Eclipse

6 This editor is only for log4j.properties files, so set the filenames prop-
erty to log4j.properties and set default to true. The default editor is exe-
cuted when the user double-clicks on the file. The user can change this
setting later.

7 So far you haven’t made the link between the editor extension point and
the class you created earlier. To do this, select the class property and click
the Selection button to bring up the Java Class Selection dialog (figure 9.5).

8 The Class Selection dialog allows you to select any existing class or create
a new one. Select the Use an Existing Java Class option and set the Class
Name to org.eclipseguide.log4j.editor.PropertiesEditor. Click Finish, and
then press Ctrl-S to save. Creating a class through this dialog would not
work in this case, because current versions do not allow you to subclass
TextEditor. Perhaps a future version will provide that enhancement.

NOTE In Eclipse 2.1, the Class Selection dialog has a bug: It sometimes incor-
rectly switches to Generate a New Java Class when you click the Browse
button. Before you click Finish, make sure the Use an Existing Java
Class option is still set.

Figure 9.5
This troublesome little dialog is used to select
an existing class or generate a new Java class.
Unfortunately, it is a bit buggy and incomplete
in Eclipse 2.1, but perhaps it will be fixed in
future versions.

Editors (TextEditor) 259

9.2.3 Adding an icon

One more thing is missing; can you tell what it is? (Looking at the title of this
section is cheating.) Yes, it’s the icon. Just for an exercise, try to run the plug-in
without defining an icon. If you leave out any required properties, your plug-in
will not load, and you will get an error message in the console like the one shown
in figure 9.6.

 Follow these steps to add the icon property:

1 Right-click on the project, select New→Folder, enter the folder name
icons, and click Finish. By convention, icons go in the icons folder.

2 Right-click on the new folder and select Import→File System to copy the
icon there. You could create a new 16x16 pixel GIF format icon in a paint
program, but for now just copy the sample.gif file from the org.eclipse-
guide.hello project you created in section 8.2.3.

3 In the manifest editor, select the editor object again and view its proper-
ties. Click on the icon property and then the selection button, navigate
down to where your icon is located, and put a check mark next to the GIF
file (see figure 9.7). Click OK and then press Ctrl-S.

Figure 9.6 Watch the console window for runtime errors like this one. Often, if
something in your plug-in isn’t working, an error message about a missing attribute,
an invalid menu path, or similar problems will appear here. Any logging you do in your
plug-in also appears here.

Figure 9.7
The Resource Selection dialog is used to
select files in your project to refer to in
the plug-in manifest. Using it is optional,
but doing so is less error-prone than
typing file paths by hand.

260 CHAPTER 9
Working with plug-ins in Eclipse

That’s it! Now save all the files, select the project, and start the Run-time Workbench
(select Run→Debug As→Run-time Workbench). In the new Workbench window,
create a new Java project that uses logging (or just copy the one from chapter 3).
Right-click on its log4j.properties file and select Open With. The Open With menu
shows the new Log4J Properties Editor as an option, with a marker indicating it is
the default editor. Select it, and voila—your new editor will open.

TIP If you rename or move anything such as a class, an icon, or another ob-
ject referred to in the plugin.xml file, that reference will not be updated
by default and you will begin getting runtime errors. However, most of
the refactoring menus have an option to update fully qualified names in
non-Java files. Select this option, type plugin.xml as the filename, and
then click Preview before accepting the change. This will usually take
care of the updates for you.

XML
The Extension Wizard created an extension in your plugin.xml file that references
the editors extension point. Here is the XML code it created:

 <extension
 point="org.eclipse.ui.editors">
 <editor
 name="Log4J Properties Editor"
 default="true"
 icon="icons/sample.gif"
 filenames="log4j.properties"
 class="org.eclipseguide.log4j.editor.PropertiesEditor"
 id="org.eclipseguide.log4j.editor.properties">
 </editor>
 </extension>

Java
The New Class Wizard created a skeletal class for PropertiesEditor that simply
extends TextEditor. You’ll expand this class later; here is its initial state:

package org.eclipseguide.log4j.editor;

import org.eclipse.ui.editors.text.TextEditor;

public class PropertiesEditor extends TextEditor
{
}

Editors (TextEditor) 261

9.2.4 Adding color

Once you have the basic text editor functioning, the next thing you’ll add is syn-
tax coloring. In Eclipse text editors, coloring works at the highest level through
partitions: non-overlapping regions of text in the document being edited. The text
editor calls a partition scanner, which you provide, to decide what text is in what
partition. Every character in the file belongs to one of the partitions you define
or to the default partition (IDocument.DEFAULT_CONTENT_TYPE).

 Consider a Java source file. The Java editor’s partition scanner breaks the doc-
ument into these partitions:

■ Single-line comment
■ Multiline comment
■ Javadoc comment
■ Character string
■ Single character
■ Default partition (contains everything else; i.e., the code)

How do you decide what your partitions should be? As a rule of thumb, you should
only use partitions to differentiate sections that are grossly different in syntax.
For example, if you have a source file that can contain two or more different lan-
guages, like a JSP file, you should put text from the different languages in differ-
ent partitions. Comments generally belong in their own partition, because text
inside a comment is freeform. The number of partitions is typically between two
to five, but it’s up to you.

 Next, within the partitions, the editor calls a token scanner (which you also pro-
vide) to break the text into tokens. A token is the smallest unit of text that can be
colored, so if you want every other character to be a different color, then every other
character must be a different token (don’t try this at home).

SIDEBAR One thing to note about tokens in the editor is that there is not a unique
token for every word in the file. For example, if you were tokenizing the
previous sentence, you wouldn’t generate a new token for One, another
for thing, another for to, and so forth. Instead, you would generate sever-
al references to the same token—perhaps a default token, because the
default should be the most common. If you’re familiar with design pat-
terns, you might recognize this as an example of the Flyweight pattern.
It’s a way to use the advantages of object-oriented coding without get-
ting buried under millions of tiny objects.

262 CHAPTER 9
Working with plug-ins in Eclipse

The token scanners are unique to each partition. For example, in the Java code
partition, the editor uses a Java keyword scanner that looks for words like abstract
and null and returns a keyword token for those and a default token for everything
else. Inside a Javadoc partition, however, the editor uses a Javadoc token scanner that
looks for keyword tokens like @author and @see, HTML tag tokens like , and link
tokens like @link. All the other text in the Javadoc comment is assigned a default
token. Some partitions may consist of one big token that spans the whole partition.

Partition scanners (RuleBasedPartitionScanner)
To see how you apply all this to the log4j.properties editor, let’s look at an exam-
ple properties file that you need to color:

Assign one appender to root logger
log4j.rootLogger=DEBUG, myConsole

Console appender
log4j.appender.myConsole=org.apache.log4j.ConsoleAppender
log4j.appender.myConsole.layout=org.apache.log4j.PatternLayout
log4j.appender.myConsole.layout.ConversionPattern=%5p %m - %l%n
log4j.appender.myLogFile.threshold=WARN

One thing that jumps out right away is the comments, which should go in their
own partition. Next, notice that the remaining lines all follow the format
name=value. The syntax of the names and values is quite different, so they each
get their own partition. Somewhat arbitrarily, we picked names to go into the
default partition, and the equals sign is considered part of the value. So, there
are three partitions:

■ Comments
■ Values
■ Everything else

To parse the text into partitions and tokens, you use the JFace base classes for
rule-based scanning. A rule-based scanner walks through a list of parsing rules you
supply (for example, to recognize a comment or a string), trying each one until it
produces a match. Rule-based scanners provide an extremely easy, though some-
what inefficient, way to parse text. Listing 9.2 shows the partition scanner class,
PropertiesPartitionScanner, responsible for breaking the text into partitions.
(To save space, the rest of the listings in this chapter won’t include the package or
import statements at the top.)

Editors (TextEditor) 263

public class PropertiesPartitionScanner
 extends RuleBasedPartitionScanner
{
 public final static String LOG4J_COMMENT = "__log4j_comment";
 public final static String LOG4J_VALUE = "__log4j_value";

 public PropertiesPartitionScanner()
 {
 super();

 Token commentPartition = new Token(LOG4J_COMMENT);
 Token valuePartition = new Token(LOG4J_VALUE);

 SingleLineRule commentRule =
 new SingleLineRule(
 "#",
 null,
 commentPartition,
 (char) 0,
 true);
 commentRule.setColumnConstraint(0);

 SingleLineRule valueRule =
 new SingleLineRule(
 "=",
 null,
 valuePartition,
 (char) 0,
 true);

 setPredicateRules(
 new IPredicateRule[] { commentRule, valueRule });
 }

 public static String[] getLegalContentTypes()
 {
 return new String[] {
 IDocument.DEFAULT_CONTENT_TYPE,
 PropertiesPartitionScanner.LOG4J_COMMENT,
 PropertiesPartitionScanner.LOG4J_VALUE };
 }
}

This class extends a base class called RuleBasedPartitionScanner provided by JFace.
Rule-based scanners are used for both partition and token scanners. The scanner
works by reading the text and feeding it to a list of rules, which you supply in a
moment. It evaluates the rules, one at a time in the order specified, until one
matches. All scanning rules follow a simple pattern. Either they fire or they don’t.
If they fire, they return the token you passed them, and the scanner stops there

Listing 9.2 Partition scanner

Base
class

 B

Define
partition

names

 CDefine
partition

names

 C

Define
partition
tokens

 D

Comments
start with #

 E

Must start in
first column

 F

Values start
with =

 G

Tell scanner
about rules

 H

Return
supported
partitions

 I

 B

264 CHAPTER 9
Working with plug-ins in Eclipse

and returns the token. If they don’t fire, they return the Token.UNDEFINED token,
and the scanner continues with the next rule in the list.
For each partition type (sometimes called content type), you define a constant string.
These are used for keys in a hash table later.
Each partition also gets its own unique token object. These tokens don’t have a
color associated with them—that will wait until the token scanning within the
partition is done.
The SingleLineRule class is for text sequences that can’t cross line boundaries. Here
you use it for comments that begin with #. You don’t specify an ending string, so the
comment can continue until the end of the line. You also tell the rule there is no
escape character ((char) 0). The last parameter tells the rule that an end of file can
also terminate the sequence (for example, if the user is typing on the last line of
the file).
Here you constrain the rule so it only matches comments that start in the first
column. Columns are zero based, like most things in Eclipse.
The second rule for values is similar to the first one for comments. Values start
with an equals sign and run to the end of the line or file, whichever comes first.
Here you provide the scanner with the list of rules to evaluate.
During refactoring, we discovered a couple of places that needed to know the list
of supported partition types, so we combined the code here. This list must be
complete and cover every character of the text.

Token scanners (RuleBasedScanner)
Now you need to write a token scanner for each of the three partitions. Let’s begin
with the easiest one: the scanner for the comment partition. Everything in the
comment partition is a comment, so it doesn’t have to do any real parsing. All it
needs to do is return a token that is unique to comment text. Listing 9.3 shows the
CommentScanner class.

public class CommentScanner extends RuleBasedScanner
{
 public CommentScanner(TokenManager tokenManager)
 {
 IToken commentToken =
 tokenManager.getToken(Log4jPlugin.PREF_COMMENT_COLOR);
 setDefaultReturnToken(commentToken);
 }
}

 C

 D

 E

 F

 G

 H
 I

Listing 9.3 The CommentScanner class

Editors (TextEditor) 265

For all the token scanners, you’ll use the RuleBasedScanner base class. It works in
a fashion similar to the RuleBasedPartitionScanner class you used in the last sec-
tion. A token manager is used to keep track of tokens and colors (discussed shortly).
A token is assigned to each section of text within the partition. Because there is
only one type of text inside the comment partition, you don’t need to supply any
rules. The code just sets the default token that will always be returned.

 Next, let’s look at the scanner for the default partition (listing 9.4). This scan-
ner is only slightly more complicated. You want all the words to be considered
part of a property name, except for whitespace (blanks, tabs, and so forth).

public class DefaultScanner extends RuleBasedScanner
{
 public DefaultScanner(TokenManager tokenManager)
 {
 IToken propertyToken =
 tokenManager.getToken(Log4jPlugin.PREF_PROPERTY_COLOR);

 setDefaultReturnToken(propertyToken);
 setRules(
 new IRule[] {
 new WhitespaceRule(new WhitespaceDetector())});
 }
}

If no rules match, the default token is returned—in this case, the property token.
A single rule is added to match whitespace characters.

 The WhitespaceDetector class is one you must provide. Here’s a simple def-
inition that returns true for blanks, newlines, tabs, and other types of white-
space characters:

public class WhitespaceDetector implements IWhitespaceDetector
{
 public boolean isWhitespace(char c)
 {
 return Character.isWhitespace(c);
 }
}

Finally, the scanner for the value partition is shown in listing 9.5. This one is
much more complicated because it has to handle keywords and formats like %m
and %d{hh:mm:ss a}.

Listing 9.4 The DefaultScanner class

266 CHAPTER 9
Working with plug-ins in Eclipse

public class ValueScanner extends RuleBasedScanner
{
 String[] keywords =
 {
 "ALL",
 "DEBUG",
 "ERROR",
 // ...
 };

 public ValueScanner(TokenManager tokenManager)
 {
 IToken defaultToken =
 tokenManager.getToken(Log4jPlugin.PREF_DEFAULT_COLOR);
 IToken formatToken =
 tokenManager.getToken(Log4jPlugin.PREF_FORMAT_COLOR);
 IToken keywordToken =
 tokenManager.getToken(Log4jPlugin.PREF_KEYWORD_COLOR);

 IRule braceRule =
 new SingleLineRule("{", "}", formatToken, (char) 0, true);

 WordRule keywordRule = new WordRule(new WordDetector());
 for (int i = 0; i < keywords.length; i++)
 {
 keywordRule.addWord(keywords[i], keywordToken);
 }

 IRule formatRule = new FormatRule(formatToken);

 IRule whitespaceRule =
 new WhitespaceRule(new WhitespaceDetector());

 setDefaultReturnToken(defaultToken);
 setRules(
 new IRule[] {
 braceRule,
 formatRule,
 keywordRule,
 whitespaceRule,
 });
 }
}

In order to recognize what is a keyword and what is not, you need a list of the key-
words. This example code requires the case of the keyword to match, which may
or may not be appropriate for your application.
Log4j formats are a little tricky to parse because they can contain modifiers in
braces. Here you get the brace part out of the way by marking everything between
braces (including the braces themselves) as a format.

Listing 9.5 The ValueScanner class

Define keywords
that can appear
in values

 B

Rule for
braces

 C

Rule for
keywords

 D

Rule for
formats

 E

Rule for
whitespace

 F

Everything
else gets
default color

 GTell base
class about
all rules

 H

 B

 C

Editors (TextEditor) 267

You use a WordRule class to match all the keywords. The keywords are added to the
rule one at a time with the addWord() method. If any of them match, then the rule
as a whole matches. For coloring purposes, you don’t need to distinguish between
the keywords; just note that one of many keywords occurred. WordRule uses a class
that implements the IWordDetector interface to tell which characters are part of
a word and which are not. This is a class you supply. Here’s the example you use:

public class WordDetector implements IWordDetector
{
 public boolean isWordStart(char c)
 {
 return Character.isLetter(c);
 }
 public boolean isWordPart(char c)
 {
 return Character.isLetterOrDigit(c);
 }
}

The third rule is a custom one that matches log4j formats starting with a percent
sign. This rule is discussed in the next section.
You need a whitespace rule to match any blanks and tabs in the file. The whitespace
rule generally comes last.
Any text not covered by one of the rules is assigned a default token and color.
Finally, you feed all the rules you created to the base class. The order is impor-
tant, because the scanner tries the rules in the given order until one matches.

Custom rules (IRule)
The Platform doesn’t supply a rule for log4j formats, so you have to create your
own. Rules are pretty simple—they have one method, evaluate(), which is passed
an ICharacterScanner class. You read a character at a time as long as the charac-
ters are matching the rule, and back up if you go too far. evaluate() returns true
if there’s a match and false otherwise. Listing 9.6 shows the source for the For-
matRule class.

public class FormatRule implements IRule
{
 private final IToken token;

 public FormatRule(IToken token)
 {
 this.token = token;
 }

 D

 E

 F

 G

 H

Listing 9.6 The FormatRule class

Remember what
token to return

 B

268 CHAPTER 9
Working with plug-ins in Eclipse

 public IToken evaluate(ICharacterScanner scanner)
 {
 int c = scanner.read();
 if (c == '%')
 {
 do
 {
 c = scanner.read();
 }
 while (c != ICharacterScanner.EOF
 && (Character.isLetterOrDigit((char) c)
 || c == '-'
 || c == '.'));
 scanner.unread();

 return token;
 }
 scanner.unread();
 return Token.UNDEFINED;
 }
}

The constructor saves the token so you can return it if there is a match.
You read the stream one character at a time using ICharacterScanner.read(). If
the first character is a percent sign, it indicates the start of a format token.
This loop keeps consuming characters as long as they are valid for a format. For
this example, you don’t check to see if the format is really valid; you just make sure
it contains valid characters. You might want to be a little more picky in your code.
One nice thing about using ICharacterScanner is that you can back up. This relieves
you from having to keep track of the last character read. Here you’ve read a char-
acter that doesn’t belong in a format, so you call the unread() method to stuff it
back for the next consumer to examine.
You’ve matched a valid-looking format, so you return the format token.
In this case the first character was not a percent sign, so you stuff it back for the
next consumer.
When rules don’t match, they should return Token.UNDEFINED so the rule scanner
continues with the next rule, if there is one.

9.2.5 Token manager

If you look at the editor samples provided with Eclipse, you’ll see they use a color
manager class to keep track of all colors used in the editor. You need to keep track
of colors because they (specifically instances of the SWT Color class) are limited

Read first
character

 C

Keep reading as
long as characters
are valid for format

 D

Oops, too far E
Got a match F

Oops, too far G

No match; go
to next rule

 H

 B

 C

 D

 E

 F

 G

 H

Editors (TextEditor) 269

operating system resources. You need to make sure you don’t allocate more than
you need, and that you release them when you’re done with them. The easiest
way to do this is to dedicate a class to keep track of them.

 A token manager, on the other hand, keeps track of both tokens and the colors
that go with them. We designed this after refactoring the color manager a few times
to add support for user-settable colors in the preferences. For example, you want
to be able to support going into the Preferences dialog and changing the color
for all keywords, and have the editor be affected immediately.

 Preferences are covered more in section 9.4, but basically the editor listens for
preference changes by registering a function that is called when a change occurs.
When this happens, the editor tells the token manager about the change by call-
ing the handlePreferenceStoreChanged() method. If the color for a token was
changed in the preferences, this lets it be changed in the real token as well. Next,
the editor needs to know if the change affected how the text being edited looks
on the screen (in other words, its presentation). To do this, it calls affectsText-
Presentation(). If that method returns true, then the editor knows it needs to
redraw some of the text.

 Listing 9.7 shows the TokenManager class for the log4j editor. This class, or
something like it, will be very useful in all your editor projects.

public class TokenManager
{
 private Map colorTable = new HashMap(10);
 private Map tokenTable = new HashMap(10);
 private final IPreferenceStore preferenceStore;

 public TokenManager(IPreferenceStore preferenceStore)
 {
 this.preferenceStore = preferenceStore;
 }

 public IToken getToken(String prefKey)
 {
 Token token = (Token) tokenTable.get(prefKey);
 if (token == null)
 {
 String colorName = preferenceStore.getString(prefKey);
 RGB rgb = StringConverter.asRGB(colorName);
 token = new Token(new TextAttribute(getColor(rgb)));
 tokenTable.put(prefKey, token);
 }
 return token;
 }

Listing 9.7 The TokenManager class

Colors and
tokens managed
by this class

 B

Look up in
hash table

 C

Create
new
token

 D

270 CHAPTER 9
Working with plug-ins in Eclipse

 public void dispose()
 {
 Iterator e = colorTable.values().iterator();
 while (e.hasNext())
 ((Color) e.next()).dispose();
 }

 private Color getColor(RGB rgb)
 {
 Color color = (Color) colorTable.get(rgb);
 if (color == null)
 {
 color = new Color(Display.getCurrent(), rgb);
 colorTable.put(rgb, color);
 }
 return color;
 }

 public boolean affectsTextPresentation(PropertyChangeEvent event)
 {
 Token token = (Token) tokenTable.get(event.getProperty());
 return (token != null);
 }

 public void handlePreferenceStoreChanged(PropertyChangeEvent event)
 {
 String prefKey = event.getProperty();
 Token token = (Token) tokenTable.get(prefKey);
 if (token != null)
 {
 String colorName = preferenceStore.getString(prefKey);
 RGB rgb = StringConverter.asRGB(colorName);
 token.setData(new TextAttribute(getColor(rgb)));
 }
 }
}

You keep a list of all the tokens and colors managed by this class. Each list is a
hash table.
The key for the token table is a constant string, the name of the token. The token
name also happens to be the name of a preference setting you’ll use to keep
track of colors later.
The key was not found, so a new token needs to be created and recorded. The
color name is looked up in the preference store (more on that in the next sec-
tion), the name is converted to an RGB (red, green, blue) format, and a new color
is allocated and assigned as the foreground color for the token. This example

Release all
colors back
to OS

 E

Look up in
hash table

 F

Create
new color

 G

See if it’s one
of ours

 H

See if it’s
one of
ours

 I

Replace
color

 J

 B

 C

 D

Editors (TextEditor) 271

only supports setting the foreground color, but you could also set the back-
ground color and the style (for example, bold or italics) of the text.
The dispose() method returns all colors back to the operating system. Colors
are a limited system resource, so it’s very important to return each one or eventu-
ally your program will fail.
The key for the color table is the RGB value for the color.
The color has not been seen before, so you need to create a new one. Colors are
Standard Widget Toolkit (SWT) resources based on the current Display.
This routine is called to see if a property change (for example, the user changing
a setting in the Preferences dialog) could affect the way the text looks in the edi-
tor. You take a conservative approach: If the property is the name of one of your
tokens, then you say yes, it did change the way the text looks. In your own appli-
cations, you may want to be a little smarter about the test.
This routine is called to apply the property change to your tokens after the pref-
erence store has been changed but before the editor decides whether it needs to
redraw text. The first step is to see if the property name is one of your tokens. If
not, you don’t have to worry about it.
If the property changed is the name of one of your tokens, then you replace the
color with a new color allocated from the new value specified in the preferences.

9.2.6 Content assist (IContentAssistProcessor)

When you’re typing in Eclipse’s Java editor and you press Ctrl-Space, the editor
makes some suggestions for you about what comes next. For example, if you type
the first half of a class name, the editor pops up a small window showing all the
classes that start with that string. This functionality is known as content assist, or
sometimes code completion. In addition, when you type a variable name and then
press the period key, the Java editor pops up the assist window showing all the
members and methods of that variable. This is called auto activation.

 You want the log4j.properties editor to do something similar (see figure 9.8).
The TextEditor class provides support by working with a content assist proces-
sor, which you provide. You can provide a different assist processor for each par-
tition. For the purposes of this example, you’ll only do content assist in the
default partition, for property names. Listing 9.8 shows the PropertiesAssistant
class that implements this functionality for the log4j.properties editor.

 E

 F

 G

 H

 I

 J

272 CHAPTER 9
Working with plug-ins in Eclipse

public class PropertiesAssistant implements IContentAssistProcessor
{
 public ICompletionProposal[] computeCompletionProposals(
 ITextViewer viewer,
 int documentOffset)
 {
 ICompletionProposal[] proposals = null;
 try
 {
 IDocument document = viewer.getDocument();
 IRegion range =
 document.getLineInformationOfOffset(documentOffset);
 int start = range.getOffset();
 String prefix =
 document.get(start, documentOffset - start);

 ConfigurationModel model =
 new ConfigurationModel(document.get());
 List completions = model.getCompletions(prefix);

 proposals = new CompletionProposal[completions.size()];
 int i = 0;
 for (Iterator iter = completions.iterator();
 iter.hasNext();)
 {
 String completion = (String) iter.next();
 proposals[i++] =
 new CompletionProposal(
 completion,
 start,
 documentOffset - start,
 completion.length());
 }

Listing 9.8 The PropertiesAssistant class

Figure 9.8
When you type a period, the log4j
properties editor takes a guess at
what comes next. As you type more
characters, the list of guesses is
narrowed down.

Editor calls
this to create
proposals

 B

Get text
before
cursor

 C

Get list of
possible
completions

 D

Create array
of proposals

 E

Add
proposal

 F

Editors (TextEditor) 273

 }
 catch (Exception e)
 {
 DebugPlugin.log(e);
 }

 return proposals;
 }

 public char[] getCompletionProposalAutoActivationCharacters()
 {
 return new char[] { '.' };
 }

 public String getErrorMessage()
 {
 return "No completions available.";
 }

 // unused methods omitted...
}

The editor calls the computeCompletionProposals() method when it needs the list
of proposals, and takes care of drawing the list and managing the assist window
for you. It passes in the viewer, which is the user interface part of the editor, and
a document offset, which tells you where the cursor is located relative to the text
being edited.
The IDocument interface, provided by JFace, is used for classes that hold the actual
text being edited. The get() method retrieves part or all of the document. In this
snippet, you get the starting and ending offset of the current line, and then
extract the text from the start of the line to the current cursor position into the
prefix variable.
ConfigurationModel is a class specific to log4j that parses the properties file and
suggests appropriate strings that could appear at the current location.
This function is supposed to return an array of CompletionProposal classes, so you
allocate one for each completion suggested by the ConfigurationModel.
Here is the heart of the method: the part that fills in the proposals. The editor’s
mission, should you decide to accept the proposal, will be to substitute all the text
from the beginning of the line to the current cursor position with one of the sug-
gested completion strings.
Unexpected exceptions should be logged so your users can report errors. The
DebugPlugin.log() method puts a record into the .log file, located in the workspace’s

Report
exceptions
to error log

 G

Period
activates
assist

 H

 B

 C

 D

 E

 F

 G

274 CHAPTER 9
Working with plug-ins in Eclipse

.metadata subdirectory. This file can be read with a text editor or by using the
PDE Runtime Error Log view.
There are two steps to make code assist automatically activated. The first step is
performed here by defining the character or characters that trigger the activation.
The second step is to call the content assistant’s enableAutoActivation() method
(see the PropertiesConfiguration class later in this section).

 The ConfigurationModel class is specific to log4j. It gets a list of appenders
from the rootLogger property; for example, if log4j.rootLogger is “DEBUG, one,
two, three” then the appenders are one, two, and three. In the interests of brev-
ity we won’t reprint the whole thing here, but this is the most important part—
the getCompletions() method:

 public List getCompletions(String prefix)
 {
 List completions = new LinkedList();

 for (int i = 0; i < appenders.length; i++)
 {
 if (testCompletion(appenders[i], prefix))
 completions.add(appenders[i]);
 }
 for (int i = 0; i < baseProps.length; i++)
 {
 if (testCompletion(baseProps[i], prefix))
 completions.add(baseProps[i]);
 }
 return completions;
 }

testCompletion() is a private method that takes a possible completion string and
tests it against the string the user has typed up to the cursor. It returns true or false,
depending on whether the completion string matches the string typed so far:

 private boolean testCompletion(String completion, String prefix)
 {
 return completion.toLowerCase().startsWith(
 prefix.toLowerCase())
 && (completion.lastIndexOf(".")
 == prefix.lastIndexOf("."));
 }

In case you’re wondering, the tests with lastIndexOf() simply make sure the
completion string has the same number of periods as the prefix string. For
example, if the user typed log4j., then log4j.appenders would be a valid comple-
tion, but log4j.appenders.MySocket would not.

 H

Editors (TextEditor) 275

9.2.7 Putting it all together

So far we’ve refrained from showing you the glue that binds all this code together—
but now it’s time. The first class, PropertiesDocumentProvider (see listing 9.9), is
the document provider for log4j.properties files. Given an object, in this case a file,
a document provider’s job is to create an IDocument. An IDocument is a JFace inter-
face that represents a document (for example, a piece of text). It also creates the
partition scanner and assigns it to the document, and just to be fair it also assigns
the document to the scanner. PropertiesDocumentProvider subclasses FileDocu-
mentProvider, a JFace class that does most of the work for you.

public class PropertiesDocumentProvider
 extends FileDocumentProvider
{
 protected IDocument createDocument(Object element)
 throws CoreException
 {
 IDocument document = super.createDocument(element);
 if (document != null)
 {
 IDocumentPartitioner partitioner =
 new DefaultPartitioner(
 new PropertiesPartitionScanner(),
 PropertiesPartitionScanner.getLegalContentTypes());
 partitioner.connect(document);
 document.setDocumentPartitioner(partitioner);
 }
 return document;
 }
}

The PropertiesConfiguration class, shown in listing 9.10, subclasses the JFace
class SourceViewerConfiguration. This class acts as the central repository for all
information about the editor. It consists of a series of getXXX() methods to get
the different parts of the editor, such as the content assist processor.

public class PropertiesConfiguration
 extends SourceViewerConfiguration
{
 private final TokenManager tokenManager;

 public PropertiesConfiguration(TokenManager tokenManager)

Listing 9.9 The PropertiesDocumentProvider class

Listing 9.10 The PropertiesConfiguration class

276 CHAPTER 9
Working with plug-ins in Eclipse

 {
 this.tokenManager = tokenManager;
 }

 public String[] getConfiguredContentTypes(
 ISourceViewer sourceViewer)
 {
 return PropertiesPartitionScanner.getLegalContentTypes();
 }

 public IPresentationReconciler getPresentationReconciler(
 ISourceViewer sourceViewer)
 {
 PresentationReconciler reconciler =
 new PresentationReconciler();
 DefaultDamagerRepairer dr;

 dr = new DefaultDamagerRepairer(
 new DefaultScanner(tokenManager));
 reconciler.setDamager(dr, IDocument.DEFAULT_CONTENT_TYPE);
 reconciler.setRepairer(dr, IDocument.DEFAULT_CONTENT_TYPE);

 dr = new DefaultDamagerRepairer(
 new CommentScanner(tokenManager));
 reconciler.setDamager(dr,
 PropertiesPartitionScanner.LOG4J_COMMENT);
 reconciler.setRepairer(dr,
 PropertiesPartitionScanner.LOG4J_COMMENT);

 dr = new DefaultDamagerRepairer(
 new ValueScanner(tokenManager));
 reconciler.setDamager(dr,
 PropertiesPartitionScanner.LOG4J_VALUE);
 reconciler.setRepairer(dr,
 PropertiesPartitionScanner.LOG4J_VALUE);

 return reconciler;
 }

 public IContentAssistant getContentAssistant(
 ISourceViewer sourceViewer)
 {
 ContentAssistant assistant = new ContentAssistant();
 assistant.setContentAssistProcessor(
 new PropertiesAssistant(),
 IDocument.DEFAULT_CONTENT_TYPE);
 assistant.enableAutoActivation(true);
 assistant.enableAutoInsert(true);
 return assistant;
 }
}

Return all
partition types

 B

Get damagers
and repairers …

 C

… for default
partition

 D

… for
comment
partition

 E

… and
for value
partition

 F

Use base
assistant and
plug in
processor

 G

Typing a period
brings up assist

 H

If there is one
proposal, do it

 I

Editors (TextEditor) 277

The base class calls this method to get all the partition types supported by the
editor. Be sure to include the default partition in the list.
Damagers and repairers; oh, the horror. These guys always come in pairs. Damagers
are like the insurance adjusters that assess what the falling tree did to your house.
Repairers are the contractors that come in later to fix what the adjusters approved.
Each partition gets its own damager and repairer. Most of the time you can use
the DefaultDamagerRepairer class and plug in a few values. This is the where your
token scanners get associated with your partition types. Here, you set up the
default partition.
Next you set up the comment partition. The order is not important.
Finally, you set up the value partition.
Here you plug in the content assist processor. The base class, ContentAssistant,
handles the grunt work.
You turn on auto activation so that typing in a period (or whatever character is
set in the content assist processor class) brings up the assist window.
If you press Ctrl-Space to bring up content assist but there is only one proposal,
turning on this option causes the editor to immediately pick that proposal for
you. Both this option and auto activation should really be controlled by a prefer-
ence setting, but that’s left as an exercise for the reader.

 Now you’re cooking with gas. One more class left to go—the PropertiesEdi-
tor class (subclassing TextEditor) is upgraded to set the editor’s source configu-
ration, its document provider, its preferences store, and so forth. See listing 9.11
for the final version.

public class PropertiesEditor extends TextEditor
{
 private final TokenManager tokenManager;
 private final ResourceBundle resourceBundle;

 public PropertiesEditor()
 {
 super();
 tokenManager = Log4jPlugin.getDefault().getTokenManager();
 resourceBundle = Log4jPlugin.getDefault().getResourceBundle();
 setSourceViewerConfiguration(
 new PropertiesConfiguration(tokenManager));
 setDocumentProvider(new PropertiesDocumentProvider());
 setPreferenceStore(
 Log4jPlugin.getDefault().getPreferenceStore());
 }

 B

 C

 D

 E

 F

 G

 H

 I

Listing 9.11 Final PropertiesEditor class

Plug in
document

provider

 C

Plug in source
configuration

 B

Attach to
preference store

 D

278 CHAPTER 9
Working with plug-ins in Eclipse

 protected boolean affectsTextPresentation(
 PropertyChangeEvent event)
 {
 return super.affectsTextPresentation(event)
 || tokenManager.affectsTextPresentation(event);
 }

 protected void handlePreferenceStoreChanged(
 PropertyChangeEvent event)
 {
 tokenManager.handlePreferenceStoreChanged(event);
 super.handlePreferenceStoreChanged(event);
 }

 protected void createActions()
 {
 super.createActions();

 ContentAssistAction action =
 new ContentAssistAction(
 resourceBundle,
 "ContentAssistProposal.",
 this);
 action.setActionDefinitionId(
 ITextEditorActionDefinitionIds.CONTENT_ASSIST_PROPOSALS);
 setAction("ContentAssistProposal", action);
 }
}

This code creates your source configuration class and associates it with the editor.
The same thing is true for the document provider. Now the editor knows how to
read files.
The editor needs to be attached to the plug-in’s preference store, a logical object man-
aged by the workspace that holds all the plug-in’s options.
The token manager is called upon to decide whether the editor’s text needs to be
redrawn (that is, it’s damaged) due to a preference change.
This method is called to handle the preference changes. The token manager must
handle them before the editor gets a chance, so it can update the tokens and their
colors before the editor starts using them to redraw text.
Content assist gets its own special action type here. It’s a little strange because this
is a retargetable action, which means each editor or view can redefine what the action
means. Another example of a retargetable action is the Copy command on the Edit
menu. The meaning of Copy varies, depending on what kind of window you are
in; in a text editor it might copy some text, but in the Resource view it would copy
a file. Content assist works the same way.

Is presentation
affected?

 E

Apply
changes

 F

Action for
Ctrl-Space

 G

Plug in
retargetable action

 H

 B

 C

 D

 E

 F

 G

Views (ViewPart) 279

This code does the retargeting. Content assist is one of the special predefined
actions like Copy and Paste that the text editor classes all know about.

 The ContentAssistAction helper class requires some resources to be present in
your plug-in’s resource bundle, and they all must start with the same string (passed
to the constructor). Here are the properties used for the log4j preferences editor,
from the file Log4jPluginResources.properties:

Required for content assist (see PropertiesEditor.java)
ContentAssistProposal.label=Content Assist@Ctrl+Space
ContentAssistProposal.tooltip=Content Assist
ContentAssistProposal.image=
ContentAssistProposal.description=Content Assist

Congratulations! You now have a fully functioning, color-coding, content-assisting
editor to show the neighbors. Won’t they be jealous?

9.3 Views (ViewPart)

As we mentioned earlier, a view is a type of Workbench part, just like an editor.
Views provide a presentation of some underlying model and often give you the
ability to modify it. For the next example, you’ll develop a view that displays log4j
logging records.

 Log4j can send its output to a number of different destinations, including the
console, flat files, databases, and sockets. If you’ve used log4j for long, you may be
familiar with the Chainsaw and LogFactor5 programs. These programs listen on
a socket for log4j output and present it in a convenient tabular format. As Swing
clients, they cannot be directly integrated into the Eclipse environment, which relies
on native SWT widgets. So, what you want is an Eclipse view with similar function-
ality that can fit well inside the Workbench. Figure 9.9 shows the view you’ll create.

 H

Figure 9.9 The Log4j view developed in this chapter has columns for the
most useful columns in logging records. The columns are resizable (except
the first one), and the view remembers their sizes when you close Eclipse.

280 CHAPTER 9
Working with plug-ins in Eclipse

This view is typical of the kind you might need in your applications. It has a number
of resizable columns for different fields in the log, a couple of buttons on its tool-
bar, a drop-down menu, and a pop-up menu. This is probably overkill for this par-
ticular application, but it allows us to demonstrate some important functionality.

SIDEBAR While creating the examples for this book, the authors took full advan-
tage of the open source nature of Eclipse by examining similar code in-
side the Eclipse platform. In particular, the Task List view uses a table
just like this one to show compiler errors and other tasks. If you’d like to
look at Eclipse internals such as the Task List view, the easiest way is to
go to the Java perspective and select Navigate→Open Type (or press
Ctrl-Shift-T). Begin typing your best guess for the class name (for exam-
ple, task) and watch as the selection of classes and interfaces is narrowed
down. When you find the one you want (in this case, TaskList), select it
and click OK (or just press the Enter key). Then you can use the power-
ful Java navigation features of the JDT to explore the source code. If you
have trouble finding the right class, see the tips in section 8.2 to include
more plug-ins in your search.

9.3.1 Adding the view

If you look in appendix C, you’ll find a table with all the extension points defined
by Platform plug-ins. One of these, org.eclipse.ui.views, is described this way:
“Defines additional views for the Workbench.” That sounds like what you want,
so on the Extensions page, add the extension for org.eclipse.ui.views; under
that extension, create a category object and a view object. The properties for
these objects should be filled in as shown in the following XML:

 <extension
 point="org.eclipse.ui.views">
 <category
 name="Log4J"
 id="org.eclipseguide.log4j">
 </category>
 <view
 name="Log4J"
 icon="icons/sample.gif"
 category="org.eclipseguide.log4j"
 class="org.eclipseguide.log4j.views.Log4jView"
 id="org.eclipseguide.log4j.views.Log4jView">
 </view>
 </extension>

Views (ViewPart) 281

(If you’re following along with this example in Eclipse, you’ll need to leave off
the class field at first, or create a skeleton class as you did for the editor example
in section 9.2.1 until you put the final one in place.)

 Notice how you set the view’s category property to the category’s id property.
Doing so makes the view appear under the category in the Show View dialog
(Window→Show View→Other) as shown in figure 9.10. The exact spelling and
capitalization are important.

9.3.2 Modifying perspective defaults

To make a view even easier for the user to discover, you may want to add it to the
view shortcuts (Window→Show View) or make it come up as part of an existing
perspective like the Java perspective. You can do both by adding org.eclipse.
ui.perspectiveExtensions to your plugin.xml file, as shown here:

 <extension
 point="org.eclipse.ui.perspectiveExtensions">
 <perspectiveExtension
 targetID="org.eclipse.jdt.ui.JavaPerspective">
 <view
 relative="org.eclipse.ui.views.TaskList"
 relationship="stack"
 id="org.eclipseguide.log4j.views.Log4jView">
 </view>
 <viewShortcut

Figure 9.10
Views are added to the Show View dialog
through the org.eclipse.ui.views
extension point. You can organize them into
groups using the category property.

282 CHAPTER 9
Working with plug-ins in Eclipse

 id="org.eclipseguide.log4j.views.Log4jView">
 </viewShortcut>
 </perspectiveExtension>
 </extension>

The targetID property tells Eclipse you’re adding something to the Java per-
spective. The view element adds your new view to this perspective, stacked
underneath the Task List. viewShortcut adds the log4j view to the view shortcut
list for this perspective. Notice how each element refers back to the ID of the
view defined earlier.

NOTE The perspectiveExtensions settings only modify the defaults for the
perspective. If the user customizes the Java perspective (for example, by
moving the views around) and then installs your plug-in, they won’t see
the new view unless they either add it manually or perform a Window→
Reset Perspective to cause Eclipse to reload the perspective from its de-
fault settings.

9.3.3 View class

Eclipse views can contain anything, but the Log4j view has just one table in it. To
make the code a little more understandable and flexible, you’ll break the code
into two pieces: a TableViewPart class that provides generic support for views that
consist only of a table; and a Log4jView class that extends TableViewPart, hooks up
with the input source, and presents the log4j-specific rows and columns.

Defining columns
Let’s look at the Log4jView class first, starting with the definitions of the table
columns:

public class Log4jView extends TableViewPart
{
 public static final int COL_IMAGE = 0;
 public static final int COL_TIME = 1;
 public static final int COL_LEVEL = 2;
 public static final int COL_MESSAGE = 3;
 public static final int COL_CATEGORY = 4;
 public static final int COL_METHOD = 5;

 private String columnHeaders[] =
 { "", "Time", "Level", "Message", "Category", "Method", };

 private ColumnLayoutData columnLayouts[] =
 {
 new ColumnPixelData(19, false),

Views (ViewPart) 283

 new ColumnWeightData(75),
 new ColumnWeightData(50),
 new ColumnWeightData(200),
 new ColumnWeightData(100),
 new ColumnWeightData(75),
 };

You define six columns and hard-code their names and positions. In a production-
quality view, you would load the names from resources and allow the user to add and
delete columns and move them around, but this code will suffice for the example.

 ColumnLayoutData is a JFace class that supplies data for the Table layout. A lay-
out is an algorithm that arranges SWT widgets on the screen. Layouts are dis-
cussed in more detail in appendix D.

 ColumnPixelData and ColumnWeightData are subclasses of ColumnLayoutData. The
former is used for fixed-width columns and the latter for variable-width columns.
Variable-width columns are a nice alternative to hard-coding pixel widths in your
code. When it’s first sizing the table, the layout algorithm lets the columns expand
according to their weight until they fill all the available space. Column weights
are relative to the total of all weights. In this example the total is 500, so column 3
takes up 200/500 (two fifths) of the available space. Because the first column will
contain an icon, it doesn’t need to shrink or grow; in fact, you don’t want it to shrink,
or the user might not be able to see your icon.

Listening for model changes
The LoggingModel class is one we made up to store a list of all the log4j records. It
will be covered in section 9.3.6. LoggingListener is a private class defined shortly
that lets the view know about model changes:

 private LoggingModel model;
 private LoggingListener modelListener;

 private Action deleteAction;
 private Action gotoAction;

Like tables in Swing, JFace tables use a Model-View architecture. Unlike Swing,
however, JFace does not automatically keep up with changes in the underlying
model the views are displaying. This is fine for short lists that don’t change often,
such as the Task List, but in the Log4j view, you need a table that is continually
updated as new records are received from the running program.

 ILoggingEventListener is an interface we made up that has one method: han-
dleEvent(). You hook this class into the model so the method is called whenever
the model gets a new log4j record. LoggingEvent is a standard log4j class that
encapsulates a logging record (its level, location, message, and so forth):

284 CHAPTER 9
Working with plug-ins in Eclipse

 private class LoggingListener implements ILoggingEventListener
 {
 public void handleEvent(final LoggingEvent event)
 {
 getSite().getShell().getDisplay().asyncExec(new Runnable()
 {
 public void run()
 {
 getViewer().add(event);
 }
 });
 }
 }

The code inside the handleEvent() method introduces a very important concept:
the user interface thread. SWT, and thus Eclipse, dedicates one thread for the entire
user interface. Using the Display.asyncExec() method, you can make your own
code run in that thread. asyncExec() adds your code to a queue and returns
immediately; there is also a syncExec() method that waits for the code to run
before returning. Just be careful not to wait on any locks or perform any long-
running operations in this thread, or the UI responsiveness will suffer. Both of
these methods have been heavily optimized, so you don’t have to worry about
calling them often. If you have used Swing before, the methods are analogous to
Swing’s invokeAndWait() and invokeLater() methods. For more information on
the UI thread, see appendix D.

 Inside the Runnable, you call getViewer().add() to add the event to the end of
your table view. In most applications, this call isn’t needed because the view can
be refreshed at any time from the model. However, using add() here lets log lines
show up immediately in the table view. You could also set up a thread that
refreshes the view every so often with a batch of incoming lines.

SIDEBAR SWT tables have gotten a bad reputation for being slow compared to
Swing tables. There is some truth to this, because Swing tables can be
virtual, meaning they can do only the work necessary to show a small
window onto potentially millions of table items. As of this writing, SWT
does not include a virtual table widget. One could argue that a table
with millions of lines is not a good user interface, but that’s really for
you to decide.

For non-virtual tables, the authors of this book and others have con-
tributed code to the next version of Eclipse that will significantly speed
up adding and removing table items. So, we hope performance will not
be an issue for most table sizes you are likely to need in the future.

Views (ViewPart) 285

Constructing and creating
Continuing with the Log4jView class, the constructor for this view simply gets a
few values for later use and tells the superclass about the column definitions:

 public Log4jView()
 {
 super();
 model = Log4jPlugin.getDefault().getLoggingModel();
 modelListener = new LoggingListener();
 setColumnHeaders(columnHeaders);
 setColumnLayouts(columnLayouts);
 }

At the point where the constructor is called, you can’t do anything else, because
the view’s user interface doesn’t exist yet—not until createPartControl() is
called, that is:

 public void createPartControl(Composite parent)
 {
 super.createPartControl(parent);

 TableViewer viewer = getViewer();
 viewer.setContentProvider(model);
 viewer.setLabelProvider(new ViewLabelProvider());
 viewer.setInput(ResourcesPlugin.getWorkspace());

 setDoubleClickAction(gotoAction);

 model.addListener(modelListener);
 }

createPartControl() is a common method that you’ll see in every view and edi-
tor. It’s called by the Framework to create the SWT widgets that make up the part.
The parent of the view, an SWT Composite class, is passed in so all the subwidgets
can be added to it. SWT implements the Composite design pattern, and the Com-
posite class is the superclass of most SWT widgets. Composites can contain other
composites, leading to a great deal of flexibility in the widget hierarchy.

 In this example, the widgets are created in the superclass, so the code calls
that first. Next you get a reference to the TableViewer class, which is the JFace
wrapper for the SWT Table class. SWT tables are bare bones—you add text and/or
graphics at specific rows and columns. TableViewer adds the concept of a content
provider (otherwise known as a model). In addition, in JFace, tables are made up
not of text but of arbitrary objects that are rendered by a label provider. A label
provider, as the name implies, makes up the text labels and icons for the under-
lying SWT widget to use.

286 CHAPTER 9
Working with plug-ins in Eclipse

 In this example, the TableViewPart superclass takes care of registering the
double-click action for you. So, the only thing left to do is hook your listener into
the model so you can be notified of new log lines.

Adding menus and toolbar buttons
Now let’s see how you add menus and toolbar buttons:

 protected void fillLocalPullDown(IMenuManager manager)
 {
 super.fillLocalPullDown(manager);
 manager.add(gotoAction);
 manager.add(new Separator());
 manager.add(deleteAction);
 }

 protected void fillContextMenu(IMenuManager manager)
 {
 super.fillContextMenu(manager);
 manager.add(gotoAction);
 manager.add(deleteAction);
 manager.add(new Separator("Additions"));
 }

 protected void fillLocalToolBar(IToolBarManager manager)
 {
 super.fillLocalToolBar(manager);
 manager.add(gotoAction);
 manager.add(deleteAction);
 }

The superclass calls the fillXXX() methods to add items to the menus and tool-
bars specific to this view. fillLocalPullDown() creates the view’s pull-down menu
(figure 9.11a), fillContextMenu() is for the pop-up (context) menu inside the
view (figure 9.11b), and fillLocalToolBar() is for the view’s toolbar (fig-
ure 9.11c).
The Additions separator provides a placeholder in case another plug-in wants to
add items to this context menu. If any were added they would appear at the end,
after a separator line.

Defining actions
When you select one of the menus or click the toolbar button, it runs the action
specified. Here’s where the actions are defined:

 protected void createActions()
 {
 super.createActions();

Menu
placeholder

 B

 B

Views (ViewPart) 287

The superclass calls the createActions() method to define any actions specific to
log4j. You define two: delete and goto. The delete action is as follows:

 deleteAction = new Action()
 {
 public void run()
 {
 getTable().setRedraw(false);
 model.clear();
 getViewer().refresh(true);
 getTable().setRedraw(true);
 }
 };
 deleteAction.setText("Delete");
 deleteAction.setToolTipText("Delete log");
 deleteAction.setImageDescriptor(
 PlatformUI
 .getWorkbench()
 .getSharedImages()
 .getImageDescriptor(
 ISharedImages.IMG_TOOL_DELETE));

This action is used to clear the model and update the view. To prevent the “rows
being sucked down the drain” visual effect, you turn off redraw in the SWT table
until all the items can be removed.

 In this example, you reuse one of the Platform’s shared images (a small X
icon), but you could just as easily create your own GIF and load it here. And

Figure 9.11
The many ways to invoke actions: (a) pull-down
menu, (b) context menu, (c) toolbar buttons

(a) (b)

(c)

288 CHAPTER 9
Working with plug-ins in Eclipse

again, in a production application you should use resources instead of the hard-
coded strings shown.

 The goto action demonstrates working with selections. When executed, the
goto action examines the record currently selected in the table of log output and
jumps to the line that produced the record in the Java editor:

 gotoAction = new Action()
 {
 public void run()
 {
 ISelection selection = getViewer().getSelection();
 Object obj =
 ((IStructuredSelection) selection).getFirstElement();
 if (obj != null)
 {
 LoggingEvent event = (LoggingEvent) obj;
 LocationInfo location =
 event.getLocationInformation();
 if (location != null)
 {
 Log4jUtil.linkToSource(location);
 }
 }
 }
 };
 gotoAction.setText("Go To");
 gotoAction.setToolTipText("Go To");
 gotoAction.setImageDescriptor(
 PlatformUI
 .getWorkbench()
 .getSharedImages()
 .getImageDescriptor(
 ISharedImages.IMG_OBJ_FILE));
 }

JFace keeps track of the currently selected table item(s) for you, so you just need
to call getSelection() to retrieve the object(s) selected. The JFace interface
IStructuredSelection is used to store zero or more items selected. To make pro-
gramming easier, selections are never null, but instead can be empty. For this
example, you only need the first item selected. The superclass sets up the table
to support single selections only, but it’s good defensive programming practice
to expect either single or multiple selections in the code.
Table items are raw log4j LoggingEvent objects that contain, among other things,
the location of the source code line that wrote the logging record. The Log4jUtil
class, available from the web site, contains a utility function (linkToSource) to
open a Java editor on the source file and scroll down to the line.

Get
selection

 B

Pick log4j
record

 C

 B

 C

Views (ViewPart) 289

Cleaning up
Wrapping up the class is the dispose() method:

 public void dispose()
 {
 model.removeListener(modelListener);
 super.dispose();
 }
}

It’s the responsibility of dispose() to disconnect listeners and free up any win-
dowing system resources. dispose() is the counterpart to createPartControl().
For the Log4j view, you need to remove the listener from the model and dispose
of any system resources allocated in the superclass (such as the table widget).

9.3.4 Table framework

Next let’s examine the TableViewPart class that is subclassed by Log4jView. It is
generic enough that you can use it in your own projects with minimal change.

 TableViewPart extends ViewPart, the superclass of all Eclipse views. ViewPart
is an abstract Platform class (not part of JFace). Its subclasses must implement
the following:

■ createPartControl()—To create the view’s controls
■ setFocus()—To accept focus

In addition, a number of optional methods can be provided, including:
■ init()—To initialize the view when it is first opened
■ saveState()—To remember view settings before it is closed
■ dispose()—To free up any resources the view was using

Constructing and creating
You don’t need a constructor for this class, because the base class’s constructor is
sufficient. So, let’s begin with createPartControl(). The Platform calls createPart-
Control() to create the SWT widgets in the part, in this case a JFace table viewer:

public class TableViewPart extends ViewPart
{
 private Table table;
 private TableViewer viewer;

 public void createPartControl(Composite parent)
 {
 viewer = new TableViewer(
 parent,

290 CHAPTER 9
Working with plug-ins in Eclipse

 SWT.SINGLE | SWT.FULL_SELECTION
 | SWT.H_SCROLL | SWT.V_SCROLL);

 table = viewer.getTable();
 table.setHeaderVisible(true);
 table.setLinesVisible(true);

 createColumns();
 createActions();
 hookMenus();
 hookEvents();
 contributeToActionBars();
 }

The SWT style bits are defined as follows:
■ SWT.SINGLE—Single selection only
■ SWT.FULL_SELECTION—Makes the entire row selectable (not just the first column)
■ SWT.H_SCROLL—Adds a horizontal scrollbar when needed
■ SWT.V_SCROLL—Adds a vertical scrollbar when needed

JFace does not hide the underlying SWT widgets, so when you want to do some-
thing like turn on the grid lines, you go directly to the Table widget to do it.
Methods in this class and the subclass are called to create columns, define actions,
and so forth.

Defining columns
If you recall from the last section, the subclass passed the list of columns and
other information to this class through some setXXX() methods. These are
defined here:

 private String columnHeaders[];
 private ColumnLayoutData columnLayouts[];
 private IAction doubleClickAction;

 public void setColumnHeaders(String[] strings)
 {
 columnHeaders = strings;
 }

 public void setColumnLayouts(ColumnLayoutData[] data)
 {
 columnLayouts = data;
 }

 public void setDoubleClickAction(IAction action)
 {
 doubleClickAction = action;
 }

SWT style
bits

 B

Set options
on SWT
widget

 C

Finish setup
of viewer

 D

 B

 C

 D

Views (ViewPart) 291

Initializing and saving state
Now we get into the view lifecycle. init() is called when the view is opening, and
saveState() is called when the Workbench (not the view) is closing:

 private IMemento memento;

 public void init(IViewSite site, IMemento memento)
 throws PartInitException
 {
 super.init(site, memento);
 this.memento = memento;
 }
 public void saveState(IMemento memento)
 {
 if (viewer == null)
 {
 if (this.memento != null)
 memento.putMemento(this.memento);
 return;
 }
 saveColumnWidths(memento);
 }

Memento is another design pattern that offers an alternative to serializing. The
problem with serializing is that it’s fragile—if you serialize a class, add a field, and
then try to deserialize it, you’re hosed. Under the covers, mementos use XML
snippets to store only the most important information, but you don’t need to deal
with the XML directly. In your table, you use it to hold the width of each column.
The Eclipse Platform remembers the state of a view from the last time the view
was opened and passes the memento to the init() method so it can reopen it in
the same state.
 Just before closing down, the Platform calls saveState() on all open views to
give them an opportunity to save their state into the memento provided.
If the Workbench is shut down before the viewer control is created, then you
need to resave any memento that was passed to init() without modifying it.
Otherwise, you call a function to save the widths of all your columns into the
memento.

Creating columns
Now let’s see how the tables are created. createColumns() is called right after the
Table widget is created, to populate it with the table’s columns:

Handle view
opening

 B

Remember
state

 C

Handle case where
viewer not yet created

 D

Record column
widths

 E

 B

 C

 D

 E

292 CHAPTER 9
Working with plug-ins in Eclipse

 protected void createColumns()
 {
 if (memento != null)
 {
 restoreColumnWidths(memento);
 }

 TableLayout layout = new TableLayout();
 table.setLayout(layout);

 for (int i = 0; i < columnHeaders.length; i++)
 {
 TableColumn tc = new TableColumn(table, SWT.NONE, i);

 tc.setText(columnHeaders[i]);
 tc.setResizable(columnLayouts[i].resizable);
 layout.addColumnData(columnLayouts[i]);
 }
 }

First you check to see if there are any previous settings on the column widths that
you need to apply.
You create a TableLayout algorithm to plan where all the columns go based on
the column data provided by the subclass.
Notice how the table columns are created. You don’t call a method on the table
to create a column; you instantiate a TableColumn class, passing it a reference to
the table. This is a common pattern seen throughout SWT. TableColumn and
Table handshake with each other to do the right thing.

Creating menus
Next is the function that creates your menus. In the hookMenus() method, you
create a new MenuManager and fill it with menu items. Well, that’s not quite true.
Really, you tell the menu manager that when it’s about to create this menu,
delete everything in it, and call a function (menuAboutToShow()) to fill it back up
again. This is the recommended approach, because it makes the menu com-
pletely dynamic:

 protected void hookMenus()
 {
 MenuManager menuMgr = new MenuManager("#PopupMenu");
 menuMgr.setRemoveAllWhenShown(true);
 menuMgr.addMenuListener(new IMenuListener()
 {
 public void menuAboutToShow(IMenuManager manager)
 {
 TableViewPart.this.fillContextMenu(manager);
 }

Restore previous
settings

 B

Create layout
for table

 C

Create
column

 D

 B

 C

 D

Fill in
menu

 B

Views (ViewPart) 293

 });
 Menu menu = menuMgr.createContextMenu(viewer.getControl());
 viewer.getControl().setMenu(menu);
 getSite().registerContextMenu(menuMgr, viewer);
 }

menuAboutToShow() turns around and calls the fillContextMenu() function (which
is just a stub in the superclass).
This is boilerplate code to create the menu, associate it with the viewer, and reg-
ister it with the Workbench so it can be extended by other plug-ins.

Handling mouse events
How do you handle mouse clicks in the view? Glad you asked:

 protected void hookEvents()
 {
 viewer.addSelectionChangedListener(
 new ISelectionChangedListener()
 {
 public void selectionChanged(SelectionChangedEvent event)
 {
 if (event.getSelection() != null)
 TableViewPart.this.selectionChanged(event);
 }
 });
 viewer.addDoubleClickListener(new IDoubleClickListener()
 {
 public void doubleClick(DoubleClickEvent event)
 {
 doubleClickAction.run();
 }
 });
 }

hookEvents() adds two listeners to the JFace table viewer. The first one is notified
whenever the user’s selection changes (for example, when they click on a row),
and the second one is notified when the user double-clicks on a row. Of course,
to double-click, you first have to click, so rows that are double-clicked get both
notifications.

Handling focus events
The Platform calls setFocus() when the user clicks anywhere in the view for the first
time. In your application, you might want to highlight or recalculate some value
being displayed, but in this example you just pass the call on to the table viewer:

Hook
everything

together

 C

 B

 C

294 CHAPTER 9
Working with plug-ins in Eclipse

 public void setFocus()
 {
 viewer.getControl().setFocus();
 }

Accessing the underlying widgets
Two getter functions are used in the subclass:

 public Table getTable()
 {
 return table;
 }

 public TableViewer getViewer()
 {
 return viewer;
 }

Filling menus and toolbars
An action bar is a combination toolbar and pull-down menu. The TableViewPart
class doesn’t define any buttons or menu items on its own:

 protected void contributeToActionBars()
 {
 IActionBars bars = getViewSite().getActionBars();
 fillLocalPullDown(bars.getMenuManager());
 fillLocalToolBar(bars.getToolBarManager());
 }

Because this class is not abstract, you need to stub out a few methods called in
the superclass for the subclass to override:

 protected void fillContextMenu(IMenuManager manager) { }
 protected void fillLocalPullDown(IMenuManager manager) { }
 protected void fillLocalToolBar(IToolBarManager manager) { }
 protected void selectionChanged(SelectionChangedEvent event) { }
 protected void createActions() { }

You could avoid using stubs by making the TableViewPart class abstract, but then
all subclasses would be forced to override all the abstract methods whether they
need them or not. In addition, if you added a new abstract method, it would
break all the subclasses.

Remembering column widths
Perhaps the hardest part in the class is the code that saves and restores column
widths, shown next. Here you get another example of how to use mementos. As
mentioned earlier, mementos are implemented with XML, but you won’t see a
single angle bracket here:

Views (ViewPart) 295

 protected static final String TAG_COLUMN = "column";
 protected static final String TAG_NUMBER = "number";
 protected static final String TAG_WIDTH = "width";

 protected void saveColumnWidths(IMemento memento)
 {
 Table table = viewer.getTable();
 TableColumn columns[] = table.getColumns();

 for (int i = 0; i < columns.length; i++)
 {
 if (columnLayouts[i].resizable)
 {
 IMemento child = memento.createChild(TAG_COLUMN);
 child.putInteger(TAG_NUMBER, i);
 child.putInteger(TAG_WIDTH, columns[i].getWidth());
 }
 }
 }

First you define the names of the XML elements used to store the width data.
Then you reach down to the SWT Table class to get a list of its current columns.
Saving data in a memento is easy; you just call createChild() for each piece of
data, and under that child you can place whatever other children you want.
When you’re done, the XML stream looks something like this:

 <column number="1" width="490" />
 <column number="2" width="64" /> ...

The Workbench state is stored in .metadata/.plugins/org.eclipse.ui.workbench/
workbench.xml in your workspace directory.

 For more complicated states, mementos can have other mementos as chil-
dren, to an arbitrary depth. The following code reads the memento and regener-
ates the layout data that specifies the column widths:

 protected void restoreColumnWidths(IMemento memento)
 {
 IMemento children[] = memento.getChildren(TAG_COLUMN);
 if (children != null)
 {
 for (int i = 0; i < children.length; i++)
 {
 Integer val = children[i].getInteger(TAG_NUMBER);
 if (val != null)
 {
 int index = val.intValue();
 val = children[i].getInteger(TAG_WIDTH);
 if (val != null)
 {

XML
element
names

 B

Get list of
current
columns

 C

Save column
width

 D

 B

 C

 D

For all
columns …

 B

Get
column
number

 C

296 CHAPTER 9
Working with plug-ins in Eclipse

 columnLayouts[index] =
 new ColumnPixelData(val.intValue(), true);
 }
 }
 }
 }
 }
}

First the code gets a list of all the column elements from the memento.
Then, for each one, it retrieves the column number and width.
Finally, it creates new table layout data that makes the column fixed width (but
resizable).

 That’s the end of the TableViewPart class. Next let’s look at how the items in
the table are drawn.

9.3.5 Label providers (LabelProvider)

As we mentioned earlier, JFace provides an abstraction on top of SWT tables.
Instead of containing an array of strings and icons, JFace tables contain arbitrary
objects. But at some point, the objects must be turned into strings and icons for
display. That’s the job of a label provider. Given an object, the label provider
returns a String and an Image that represents that object. Think of it as the
toString() method on steroids.

 ITableLabelProvider is an interface that adds the concept of columns to a
plain old, run-of-the-mill label provider. Now, instead of asking for one string/
icon per object, the caller can ask for a pair for each column.

 If you look back at figure 9.9, you’ll see that the first column (column 0) has
an image and no text, whereas the others have text and no image. This is imple-
mented by the ViewLabelProvider, explained in listing 9.12.

class ViewLabelProvider
 extends LabelProvider
 implements ITableLabelProvider
{
 private static final DateFormat DATE_FORMATTER =
 new SimpleDateFormat("HH:mm:ss.SSS");

 public String getColumnText(Object obj, int index)
 {
 LoggingEvent event = (LoggingEvent) obj;
 LocationInfo locationInfo;
 switch (index)

Apply width
to column

 D

 B

 C

 D

Listing 9.12 The ViewLabelProvider class

Formatter for
record’s time

 B

Get text for
specified
column

 C

Views (ViewPart) 297

 {
 case Log4jView.COL_TIME :
 return DATE_FORMATTER.format(new Date(event.timeStamp));
 case Log4jView.COL_LEVEL :
 return event.getLevel().toString();
 case Log4jView.COL_MESSAGE :
 return event.getRenderedMessage();
 case Log4jView.COL_CATEGORY :
 return event.getLoggerName();
 case Log4jView.COL_METHOD :
 locationInfo = event.getLocationInformation();
 if (locationInfo != null
 && locationInfo.getMethodName() != null)
 {
 return locationInfo.getMethodName();
 }
 break;
 }
 return "";
 }

 public Image getColumnImage(Object obj, int index)
 {
 if (index == Log4jView.COL_IMAGE)
 return getImage(obj);
 else
 return null;
 }

 public Image getImage(Object obj)
 {
 LoggingEvent event = (LoggingEvent) obj;
 Level level = event.getLevel();

 ISharedImages sharedImages =
 PlatformUI.getWorkbench().getSharedImages();

 return sharedImages.getImage(
 (level == Level.ERROR
 ? ISharedImages.IMG_OBJS_ERROR_TSK
 : (level == Level.WARN
 ? ISharedImages.IMG_OBJS_WARN_TSK
 : null)));
 }
}

The Java base library provides a nice, locale-specific date/time formatter with a
bewildering array of options. Luckily you just need to print the time, in the for-
mat hours:minutes:seconds.milliseconds.

Get icon for
given column

 D

Get error/
warning icon

 E

Borrow
one from
Platform

 F

 B

298 CHAPTER 9
Working with plug-ins in Eclipse

The getColumnText() method takes one row of the table and the column number
(zero based) and renders that cell into a String.

NOTE SWT will be very displeased if you pass it a null when it is expecting a
string. Use an empty string instead, to avoid a null pointer exception.

This method is similar to getColumnText(), except it returns an Image instead of
a String. Null images are OK.
The getImage(Object) method comes from the LabelProvider class. By return-
ing an error or warning icon here, you satisfy both callers that expect a Label-
Provider and callers that expect an ITableLabelProvider.
Where possible, we like to borrow predefined images from the Platform. There
are several reasons, but the main two are that the images are already loaded into
memory, so they’re faster to use; and they’re prettier than most programmers
can create.

9.3.6 Models

The LoggingModel class (listing 9.13) is simple, but it demonstrates a couple of
useful concepts—listener lists and structured content providers:

■ A listener list is a list of listeners (well, what did you expect?). More specifi-
cally, it’s an array used to store objects that want to be notified of particular
events. It is guaranteed not to have any duplicates, so if you add a listener
twice and remove it once, it doesn’t appear in the list any more. It’s very
important not to leave stale listeners in the list (to do so would cause a
memory leak or worse), so don’t be shy about removing them. The best
place is in a dispose() method.

■ A structured content provider provides content to structured viewers (you saw
that coming, didn’t you?). A structured viewer is a class like TableView,
which uses a Model-View architecture—that is, it separates the data from
the presentation of the data. These classes need to get their data (content)
from somewhere (the provider). So, the model class (LoggingModel) imple-
ments IStructuredContentProvider.

TIP Whatever you do, do not remove listeners or release any other type of re-
source in finalize(). The Java finalize() method is completely use-
less, because you can’t predict when, or even if, it will run. Avoid it. ‘Nuff said.

 C

 D

 E

 F

Views (ViewPart) 299

public class LoggingModel implements IStructuredContentProvider
{
 private ListenerList listenerList = new ListenerList();
 private List events = new ArrayList();

 public void addListener(ILoggingEventListener listener)
 {
 listenerList.add(listener);
 }
 public void removeListener(ILoggingEventListener listener)
 {
 listenerList.remove(listener);
 }

 public void addEvent(LoggingEvent event)
 {
 events.add(event);
 Object[] listeners = listenerList.getListeners();
 for (int i = 0; i < listeners.length; i++)
 {
 ((ILoggingEventListener) listeners[i]).handleEvent(event);
 }
 }

 public void clear()
 {
 events.clear();
 }

 public Object[] getElements(Object inputElement)
 {
 return events.toArray();
 }

 public void dispose()
 {
 }

 public void inputChanged(
 Viewer viewer,
 Object oldInput,
 Object newInput)
 {
 }
}

A ListenerList class (from JFace) is used to hold all parties interested in model
changes. Although you know that, for this example, there will only ever be one

Listing 9.13 The LoggingModel class

Interested
parties

 B
All log4j records C

Opt in to
model
changes

 D

Opt out
of model
changes

 E

Add new
record; notify
listeners

 F

Remove all
records

 G

Get all
records

 H

Clean up I

Switch
inputs

 J

 B

300 CHAPTER 9
Working with plug-ins in Eclipse

interested party, it’s good to get in the habit of using this kind of boilerplate
code, because it reduces errors.
You keep a complete list of all the log4j records ever written. In a real applica-
tion, you would probably want to have some kind of cap on this list—say, the last
50,000 records or so. Or, you could spool them out to disk.
If a view is interested in keeping up with every single model change, it can regis-
ter itself by calling this method. Many views are content with getting all the ele-
ments at once, using the getElements() method.
As noted, it’s the view’s responsibility to remove itself from the interested parties list.
The addEvent() method is called from the receiver thread (see the next section)
whenever a record comes in from the log4j socket. Its first job is to keep the
model up to date, and then it notifies any interested parties about the addition.
clear() is called in the delete action (see section 9.3.3) when the user clicks the
Delete button or selects the item from one of the view’s menus or toolbars. It
erases all records in the model. If you wanted to get fancy, you could notify the
viewers about that, too; but in this example the viewer tells the model to clear, so
it already knows.
Here you return all the records in the model.
This code releases any resources.
This method could be used to handle gross input changes, but is not needed in this
example. You have to define it, though, because it’s an abstract method of ViewPart.

9.3.7 Receiver thread

In the plug-in, a thread is started that listens for log records and adds them to
the model. The full code for the ReceiverThread class can be found in the exam-
ples on the web site, but here are the essentials.

 The thread creates a new server socket and accepts a connection on it from
the log4j client (the program being debugged):

 ServerSocket server = new ServerSocket(port);
 Socket client = server.accept();

Then it deserializes LoggingEvents from the socket stream until end of file is
reached. As it pulls each one out, it sends it off to the model to be added to the
list. The loop ends when the socket gets an end of file exception (not shown):

 ObjectInputStream ois =
 new ObjectInputStream(client.getInputStream());
 while (true)

 C

 D

 E

 F

 G

 H

 I

 J

Preferences (FieldEditorPreferencePage) 301

 {
 LoggingEvent event =
 (LoggingEvent) ois.readObject();
 model.addEvent(event);
 }

9.4 Preferences (FieldEditorPreferencePage)

No plug-in discussion would be complete without an explanation of preferences.
We’ve mentioned them a few times in this chapter, but now it’s time to look at
them in more detail and show how to design preference pages.

 You’ve used preference pages like the one in figure 9.12 many times during
the course of this book. But how are they created, and where do they save their
options? How do the plug-ins read and use those options, and where do the
defaults come from? We’ll answer these questions in this section.

 Like editors and views, preference pages are defined in the plug-in manifest
(plugin.xml). This section defines the two pages in the log4j integration plug-in:

<extension
 point="org.eclipse.ui.preferencePages">
 <page
 name="Log4J"
 class="org.eclipseguide.log4j.preferences.MainPreferencePage"
 id="org.eclipseguide.log4j.preferences.MainPreferencePage">
 </page>
 <page
 name="Log4J Editor"
 category="org.eclipseguide.log4j.preferences.MainPreferencePage"
 class="org.eclipseguide.log4j.preferences.EditorPreferencePage"

Figure 9.12
Main Preferences
page for the Log4J
plug-in. This page
has a single field,
which is constrained
to be a number in a
certain range.

302 CHAPTER 9
Working with plug-ins in Eclipse

 id="org.eclipseguide.log4j.preferences.EditorPreferencePage">
 </page>
</extension>

Notice how the hierarchy of pages is established through the category property,
similar to the view categories you set up earlier.

9.4.1 Main preference page

Listing 9.14 shows the code for the MainPreferencePage class. A preference page
can use a number of superclasses, but the most convenient one is FieldEditor-
PreferencePage. This class lets you make a page with fields tied directly to the
underlying preference store. Changing the field in the preference page automat-
ically updates the store, and vice versa. So, if you can design your preference
page in terms of these fields, as in this example, it will save you quite a bit of time.

public class MainPreferencePage
 extends FieldEditorPreferencePage
 implements IWorkbenchPreferencePage
{

 public MainPreferencePage()
 {
 super(FieldEditorPreferencePage.GRID);
 setPreferenceStore(
 Log4jPlugin.getDefault().getPreferenceStore());
 }

 public void createFieldEditors()
 {
 IntegerFieldEditor portEditor =
 new IntegerFieldEditor(
 Log4jPlugin.PREF_PORT,
 "&Port number for viewer (effective after restart):",
 getFieldEditorParent());
 portEditor.setValidRange(1000, 65535);
 addField(portEditor);
 }

 public void init(IWorkbench workbench)
 {
 }
}

Listing 9.14 The MainPreferencePage class

Use Grid layout B

Tie to
preference
store

 C

Create field
for port
number

 D

Any special
setup goes
here

 E

Preferences (FieldEditorPreferencePage) 303

The Grid layout provides the most flexibility, so you should almost always use that.
This is how the field editor page is tied to your preference store, so it can change
the preferences automatically.
This page has only one field, which takes an integer value. The value must be
between 1000 and 65535. JFace provides many different types of fields, includ-
ing strings, booleans, fonts, lists, radio buttons, and colors. You can also create
your own field types if you like.
init() is a required method from IWorkbenchPreferencePage. Here you don’t have
any initialization code, so you just leave it empty.

 The FieldEditorPreferencePage class and its superclasses provide the banner
graphic, the Restore Defaults button, and the Apply button.

9.4.2 Editor preference page

The editor preference page is similar, except it has a list of colors to choose from,
one for each token type that the editor knows about (see figure 9.13). Listing 9.15
shows the code for the EditorPreferencePage class.

public class EditorPreferencePage
 extends FieldEditorPreferencePage
 implements IWorkbenchPreferencePage
{

 B
 C

 D

 E

Listing 9.15 The EditorPreferencePage class

Figure 9.13
Log4J editor preferences control the
colors of various tokens. The changes
take effect immediately when you click
Apply or OK.

304 CHAPTER 9
Working with plug-ins in Eclipse

 public EditorPreferencePage()
 {
 super(GRID);
 setPreferenceStore(
 Log4jPlugin.getDefault().getPreferenceStore());
 setDescription("Log4J editor settings:");
 }

 public void createFieldEditors()
 {
 addField(
 new ColorFieldEditor(
 Log4jPlugin.PREF_COMMENT_COLOR,
 "&Comments",
 getFieldEditorParent()));
 addField(
 new ColorFieldEditor(
 Log4jPlugin.PREF_FORMAT_COLOR,
 "&Formats",
 getFieldEditorParent()));
 // etc...
 }
 // ...
}

This page sets a description, which is displayed just under the banner.
Here is an example of the color field editor. The ampersands in the labels set up
keyboard shortcuts.

9.5 Plugin class

To wrap up the log4j integration example, you need to add a few things to the
plug-in class (Log4jPlugin) originally defined in section 9.1.2. First, you define a
few static strings for preference names:

 public static final String PREF_COMMENT_COLOR =
 "log4j_comment_color";
 public static final String PREF_PROPERTY_COLOR =
 "log4j_property_color";
 // etc...
 public static final String PREF_PORT = "log4j_view_port";

Next you have to create defaults for the colors and the port number. These
defaults are applied the first time the plug-in is run, and are also used if the user
clicks the Restore Defaults button on the Preferences page:

 protected void initializeDefaultPreferences(
 IPreferenceStore store)

Set description B

Create color
field for each
token type

 C

 B

 C

Summary 305

 {
 super.initializeDefaultPreferences(store);

 store.setDefault(
 Log4jPlugin.PREF_COMMENT_COLOR,
 StringConverter.asString(new RGB(63, 127, 95)));
 store.setDefault(
 Log4jPlugin.PREF_FORMAT_COLOR,
 StringConverter.asString(new RGB(255, 0, 42)));
 // etc...

 store.setDefault(Log4jPlugin.PREF_PORT, 4445);
 }

Finally, you have a method that starts up the receiver thread:

 private void setupReceiver()
 {
 int port = getDefault().getPreferenceStore().getInt(
 Log4jPlugin.PREF_PORT);
 try
 {
 ReceiverThread lr =
 new ReceiverThread(loggingModel, port);
 lr.start();
 }
 catch (IOException e)
 {
 DebugPlugin.log(e);
 }
 }

Whew! That completes the log4j integration example. Just a reminder: You can
find all the source code for this example, including a few extra features we didn’t
have room to show in this book (such as decorations and JDT integration), at the
book’s web site. Feel free to use any of the code in your own projects.

9.6 Summary

Eclipse is often viewed as just a Java IDE, but as you’ve seen in the past two chap-
ters, that’s just the tip of the iceberg. The same interfaces used to develop the
Platform plug-ins is available for you to use to create customized editors and
views for your own plug-ins. All the source code is available, too. As a result, your
plug-ins can integrate seamlessly with and extend the Java development envi-
ronment, or you can write entirely new environments to support other languages
and applications.

306 CHAPTER 9
Working with plug-ins in Eclipse

 We hope you’ve enjoyed your exploration of Eclipse as much as we’ve enjoyed
being your guide. Be sure to check out the extended examples for this book at
http://www.manning.com/gallardo. Further adventure and rewards await the ded-
icated traveler, so keep pushing the boundaries of your knowledge and experi-
ence. The only limit is your imagination.

307

AJava perspective
menu reference

308 APPENDIX A
Java perspective menu reference

Looking at Eclipse’s menus, which can have more than 100 options, can be
daunting. Many options, such as File→Save, are familiar and do what you
expect. Others, such as Source→Generate Delegate Methods, may leave you
wondering. This appendix describes them all for you, with special attention to
those that may not be obvious or that perform complex tasks, such as refactor-
ing. The available menus and their contents change from perspective to perspec-
tive; here we list those found in the Java perspective, which are generally a
superset of the other perspectives’ menus.

Table A.1 File menu options

New Creates projects (Java, Simple, Plug-in), folders within projects, and resources
within folders and projects.

Close [Ctrl-F4] Closes the current editor.

Close All [Ctrl-Shift-F4] Closes all editors.

Save [Ctrl-S] Saves the resource currently being edited.

Save As Saves the resource currently being edited with a new pathname or filename.

Save All [Ctrl-Shift-S] Saves all resources that have been changed in the editor.

Revert Reverts the resource being edited to its last saved state.

Move Moves resource to a new location. Not semantically aware; see Refactoring→
Move for moving Java elements.

Rename Renames a resource. Not semantically aware; see Refactoring→Rename for
moving Java elements.

Print [Ctrl-P] Prints the resource currently being edited. Only available if the editor supports printing.

Import Brings resources or projects into the workspace. Options include:
■ Existing Project into Workspace—Can be used to copy a project from

another Eclipse workspace or to add a project that has been deleted
from the current workspace, providing the contents have not been
deleted (see Edit→Delete).

■ File System—Adds resources such as files and Java packages from out-
side the present project into the current project.

■ Zip File—Allows you to select and import resources from inside a zip file.

Export Makes resources or projects in the workspace available outside Eclipse. Options
include:

■ File System—Copies resources out of Eclipse; destination cannot be
inside workspace.

■ JAR file—Archives selected resources into a JAR file.
■ Javadoc—Creates a Javadoc from selected resources. (Identical to

Project→Generate Javadoc.)
■ Zip File—Archives selected resources into a zip file.

Properties [Alt-Enter] Opens the Properties dialog for a selected resource or project.

Java perspective menu reference 309

Table A.2 Edit menu options

Undo [Ctrl-Z] Undoes the last action.

Redo [Ctrl-Y] Undoes the last undo.

Cut [Ctrl-X] Copies the currently selected text, resource, or project to the clipboard and
deletes it from its current location.

Copy [Ctrl-C] Copies the currently selected text, resource, or project to the clipboard.

Paste [Ctrl-V] Pastes the clipboard contents to the current location in a file, workspace, or project.

Delete Deletes the selected text, resource, or project. When you’re deleting a project, a
dialog box presents the options of deleting the project’s contents or preserving the
contents. If the contents are preserved, the project can be restored using File→
Import→Existing Project into Workspace. Note, however, that you will not be able
to create a new project with the same name unless you delete the contents.

Select All [Ctrl-A] Selects the entire contents of the currently selected resource in the editor.

Find/Replace [Ctrl-F] Presents a dialog box for finding and, optionally, replacing text in the currently
selected resource in the editor. See Search→Search for locating text in multiple
files.

Find Next [Ctrl-K] Searches forward (from the current cursor location) for the next occurrence of
the previously found text.

Find Previous
[Ctrl-Shift-K]

Searches backward for the previous occurrence of the found selected text.

Incremental Find
Next [Ctrl-J]

Searches forward for text as it is typed incrementally (letter by letter). Search
text appears in the status bar at the bottom of the Workbench. (For example, if
the cursor in the editor is located before the text doe, a deer, pressing d will
locate and highlight the d in doe; continuing by pressing e will locate and high-
light the de in deer. Pressing Backspace will delete the e in the status bar and
return the cursor to the d in doe.)

Incremental Find
Previous [Ctrl-Shift-J]

Searches backward for the text as it is typed, letter by letter.

Add Bookmark Adds a bookmark (a named tag) to the current line in the resource currently
selected in the editor. The line can then be located by marks in the margin of
the editor when the file is open. A bookmark can also be added to a file
selected in the Package Explorer. A Bookmark view, similar to the Task view, is
available to make it easier to navigate between different bookmarks.

Add Task Adds a task to the selected resource.

Expand Selection To Selects text in a semantically aware way. Note that the associated shortcut keys
in particular provide a convenient way to select expressions, lines, methods and
classes. Options include:

■ Enclosing Element [Alt-Shift-Up Arrow]
■ Next Element [Alt-Shift-Right Arrow]
■ Previous Element [Alt-Shift-Left Arrow]
■ Restore Previous Selection [Alt-Shift-Down Arrow]

310 APPENDIX A
Java perspective menu reference

Show Tooltip
Description [F2]

Provides information, as a tooltip, about the element at the current cursor loca-
tion. Note that the F2 shortcut is significantly more convenient than the menu
selection.

Content Assist
[Ctrl-Space]

Provides context-sensitive code completion. Typing (or clicking) on an object
name, for example, and then selecting Edit→Content Assist (or pressing Ctrl-
Space) displays a pop-up window with a list of available methods and attributes.
Content Assist will also create variable, method, and field names; for example,
typing String followed by a space and then selecting Content Assist provides the
variable name string.

Quick Fix [Ctrl-1] Suggests fixes for an error. Suggestions are available when a yellow light bulb
appears in the left margin of the editor. Clicking the corresponding line and
selecting Edit→Quick Fix (or clicking on the light bulb) brings up a list of sugges-
tions. For example, if there is an undefined identifier on the line, suggestions
might include creating a local variable, creating a class field, or adding a param-
eter to the method. Additionally, if a variable with a similar name is defined, it
offers to change the undefined name.

Parameter Hints
[Ctrl-Shift-Space]

Displays the parameters a method accepts. If the method is overloaded, a list of
the overloaded methods is shown instead. For example, suppose a method
Strings has been defined. Typing s.equals(and selecting Edit→Parameter
Hints will display Object anObject.

Encoding Changes the encoding the editor uses to display the file.

Table A.3 Source menu options. This menu is also available from the context menu in the
Java editor.

Comment [Ctrl-/] Comments out selected lines with //.

Uncomment [Ctrl-\] Removes comment marks (//) from selected lines.

Shift Right Indents the selected text. You can also select text in the editor and press Tab

Shift Left Outdents the selected text. You can also select text in editor and press Shift-Tab.

Format
[Ctrl-Shift-F]

Applies formatting (as defined using Windows→Preferences→Java→Code Formatter)
to the selected text or to the whole file if no text is selected.

Sort Members Sorts class members by type and name in the file currently selected in the editor.
To view or change this order, select Windows→Preferences→Java→Appearance→
Member Sort Order.

Organize Imports
[Ctrl-Shift-O]

Sorts the import statements by package name prefix in the file currently selected
in the editor. To view or change this order, select Windows→Preferences→Java→
Organize Imports.

Add Import
[Ctrl-Shift-M]

Adds an import statement to the file for the type at the cursor.

Override/Imple-
ment Methods

Generates stubs for methods in a superclass—either abstract methods that need
to be implemented or concrete methods that can be overridden.

Table A.2 Edit menu options (continued)

Java perspective menu reference 311

Generate Getter
and Setter

Creates methods for accessing and setting class fields. A dialog box presents avail-
able fields, together with the options to create getter and setter methods for each.

Generate Delegate
Methods

Creates methods that delegate to a class field’s methods. A dialog box presents
available fields and the available methods for each. For example, if a class has a
field myString, delegate methods can be added to the class for any method
applicable to myString. Assuming myString is of type String, any of the
String class’s methods can be delegated. Selecting equals(Object) in the
dialog box would generate the following:

public boolean equals(Object obj)
{
 return myString.equals(obj);
}

Add Constructor
from Superclass

Adds unimplemented constructors from a superclass.

Add Javadoc
Comment

Adds a Javadoc comment to a method or class.

Surround with try/
catch Block

Surrounds the selected lines with a try block and adds catch clauses for each
type of exception thrown. One of Eclipse’s handiest features.

Externalize Strings Replaces all hard-coded strings with a key referring to key-value pairs in a property
file and creates a class for retrieving the values by referencing the key. Suppose a
class contains this line:

System.out.println("Hello, world!");

Assuming you accept the defaults in the Externalize Strings Wizard that is
launched, this line will be changed to:

System.out.println(
 Messages.getString(
 "HelloWorld.Hello,_world_!_1")); //$NON-NLS-1$

The comment $NON-NLS-1$ indicates that this string should not be externalized.
If you try to select Externalize Strings again, you’ll get a message that says no
strings were found to externalize.

A Messages class is created, containing the following method for retrieving
strings from the property file:

public static String getString(String key)
{
 // TODO Auto-generated method stub
 try
 {
 return RESOURCE_BUNDLE.getString(key);
 }
 catch (MissingResourceException e)

Table A.3 Source menu options. This menu is also available from the context menu in the
Java editor. (continued)

312 APPENDIX A
Java perspective menu reference

 {
 return '!' + key + '!';
 }
}

A properties file named test.properties by default is created with the following entry:

 HelloWorld.Hello,_world_!_1=Hello, world\!

This feature is especially useful when you’re internationalizing applications,
because separate properties files can be provided for different languages. Note
that this is a refactoring, and as such can only be undone using Refactor→Undo.

Find Strings to
Externalize

Finds files in a selected package, folder, or project that contain hard-coded strings.
A dialog box listing these files allows you to externalize the strings in each file using
the same Externalize Strings Wizard launched by Source→Externalize Strings.

Convert Line
Delimiters

Allows you to select the line delimiters to use. The default is the platform default:
CR/LF on Windows; LF on Unix, Mac OS X, and Linux. Java tools are generally toler-
ant of any line delimiter (or mix of delimiters).

Table A.4 Refactorings menu options. This menu is also available from the context menu in the Java edi-
tor. References to modified elements (method or class names, signatures, and so on) throughout the
workspace will be updated, if appropriate, unless you veto them individually by clicking the Preview button
in the Refactoring Wizard. See section 4.2 for an introduction to Eclipse’s refactoring features.

Undo [Alt-Shift-Z] Undoes a refactoring. Refactoring can only be undone using this command, in
place of the standard Undo command. Normally, only a single complete refac-
toring can be undone; in addition, if you make further changes to any of the
files involved in the refactoring, you may not be able to undo the refactoring.

Redo [Alt-Shift-Y] Redoes a refactoring that was undone with Refactoring→Undo.

Rename [Alt-Shift-R] Renames Java elements, including attributes, methods, classes, and package
names in a semantically aware way (updates all references correctly).

Move [Alt-Shift-V] Moves Java elements, including static fields and methods, to other classes,
and classes to other packages in a semantically aware way.

Change Method
Signature

Changes parameters, return types, and visibility of methods.

Convert Anonymous
Class to Nested

Moves an anonymous inner class to a nested class. Anonymous classes are a
way of defining and instantiating a class inside a method, in the place where it
is used. The semantics require that this class either implement an interface or
extend a superclass.

Anonymous classes are a common and convenient shorthand for creating
listeners for GUI elements, for example. When the class gets too large, how-
ever, anonymous classes make for code that is hard to read and understand.

For example, the following method instantiates and returns an anonymous
class implementing an interface Bag that has two methods, get() and set():

Table A.3 Source menu options. This menu is also available from the context menu in the
Java editor. (continued)

Java perspective menu reference 313

public class Example
{
 public Bag getBag()
 {
 return new Bag()
 {
 Object o;
 Object get()
 {
 return o;
 }
 void set(Object o)
 {
 this.o = o;
 }
 };
 }
}

After you place the cursor inside the anonymous class and select this refactor-
ing from the menu, the Refactoring Wizard (not surprisingly) asks for a name
for the new nested class. If you enter BagImpl, it modifies the code as follows:

public class Example
{
 private final class BagImpl implements Bag
 {
 Object o;
 Object get()
 {
 return o;
 }
 void set(Object o)
 {
 this.o = o;
 }
 }
 public Bag getBag()
 {
 return new BagImpl();
 }
}

Table A.4 Refactorings menu options. This menu is also available from the context menu in the Java edi-
tor. References to modified elements (method or class names, signatures, and so on) throughout the
workspace will be updated, if appropriate, unless you veto them individually by clicking the Preview button
in the Refactoring Wizard. See section 4.2 for an introduction to Eclipse’s refactoring features. (continued)

314 APPENDIX A
Java perspective menu reference

Convert Nested
Type to Top Level

Converts a nested class to a top-level class in its own file. One of the benefits
of a nested class is that it has access to the outer class’s attributes and meth-
ods. This refactoring preserves this capability by adding an instance variable of
the outer class’s type to the new top-level class. Consider a class Example,
with a nested class called NestedClass:

public class Example
{
 class NestedClass
 {
 String attribA;
 }

 NestedClass getNestedClass()
 {
 return new NestedClass();
 }
}

Refactoring moves NestedClass to its own file, NestedClass.java; adds a
field of type Example; and adds a constructor to set that field:

class NestedClass
{
 private final Example example;

 NestedClass(Example example)
 {
 this.example = example;
 }
 String attribA;
}

In the outer class, a reference to the outer class, this, is passed to the con-
structor when NestedClass is instantiated:

public class Example
{
 NestedClass getNestedClass()
 {
 return new NestedClass(this);
 }
}

(In this trivial example, the nested class doesn’t access any of the outer class
members, so you could simplify the code by removing the Example instance
variable and making the corresponding change to the constructor.)

Table A.4 Refactorings menu options. This menu is also available from the context menu in the Java edi-
tor. References to modified elements (method or class names, signatures, and so on) throughout the
workspace will be updated, if appropriate, unless you veto them individually by clicking the Preview button
in the Refactoring Wizard. See section 4.2 for an introduction to Eclipse’s refactoring features. (continued)

Java perspective menu reference 315

Push Down Moves methods or attributes from a class to a subclass. For example, sup-
pose a class Person includes a field job and a method getJob() and has
a subclass Employee. This refactoring can be used to move job and get-
Job() to the Employee class.

Before using this refactoring, you must first select a member. Selecting
job followed by Push Down displays a dialog box that lists class members,
with the job field selected. Other members can be selected here, too; click-
ing the Add Required button adds members required by the job field, which in
this case is the getJob() method.

(Note that the Add Required feature doesn’t always work correctly in ver-
sion 2.1, so you may need to verify that all necessary fields and methods are
selected; otherwise an error will occur and you’ll have to return to this screen
to correct it.)

Pull Up The complement of Push Down. Moves class members from a class to its
superclass. The caveat about Push Down also applies here: you need to verify
that all associated members are selected in the Refactoring Wizard.

Extract Interface Uses a class as a template to create an interface. See section 4.2.2 for an
example.

Use Supertype
Where Possible

Changes references from a class to its superclass. This refactoring is useful
when the exact type of a concrete class is not important—only the fact that it
implements a particular abstract class. For example, you might use this option
if you’ve written code using the concrete class GregorianCalendar, a sub-
class of Calendar, but decide you want to generalize your code to use Cal-
endar; this way, your program can use other subclasses of Calendar, such
as (potentially) one that implements the traditional Chinese calendar.

Inline [Alt-Shift-I] Replaces a method call with the method’s code, a variable with the expression
that was assigned to it, or a constant with the constant’s hard-coded value.
These options are the complements of Extract Method, Extract Local Variable,
and Extract Constant, respectively.

Extract Method
[Alt-Shift-M]

Creates a method from a section of another method. This refactoring is argu-
ably the most useful and powerful that Eclipse provides. You can use it when a
method gets too long and a subsection can logically be separated. It can sig-
nificantly improve code reuse if the subsection can be used by other methods.
For example, consider the following method (a simplified version of code intro-
duced in section 4.2.7), which obtains a record from a file in the form of a
vector and converts it into an object:

 String fileName;
 Class type;

 public Object get(int i)
 throws InstantiationException,
 IllegalAccessException

Table A.4 Refactorings menu options. This menu is also available from the context menu in the Java edi-
tor. References to modified elements (method or class names, signatures, and so on) throughout the
workspace will be updated, if appropriate, unless you veto them individually by clicking the Preview button
in the Refactoring Wizard. See section 4.2 for an introduction to Eclipse’s refactoring features. (continued)

316 APPENDIX A
Java perspective menu reference

 {
 FilePersistence persistence =
 new FilePersistence(fileName);
 Vector v = persistence.read(i);
 Object o = type.newInstance();
 Iterator vIter = v.iterator();
 while (vIter.hasNext())
 {
 // Use Reflection API to populate
 // Object o with elements from Vector
 }
 return o;
 }

This code does two logically distinct things: It obtains a record in the form of a
vector and performs a conversion from a vector to an object. By separating the
two steps, the conversion can be reused for vectors obtained in other ways,
such as by retrieving them from a database. To extract the vector to object
code, select the lines beginning with

 Object o = type.newInstance();

and ending with

 return o;

Select Refactor→Extract Method and provide a method name such as
vector2Object. The wizard in this case correctly determines that it should
take a parameter of type Vector and return an Object. (In other cases, you
may need to move variable declarations and adjust parameters so the extrac-
tion can be performed more cleanly. You may also want to reorder and rename
parameters and change the methods’ visibility.) When you are satisfied with
the dialog box settings, click OK. The refactored code then looks like this:

 String fileName;
 Class type;

 public Object get(int i)
 throws InstantiationException,
 IllegalAccessException
 {
 FilePersistence persistence =
 new FilePersistence(fileName);
 Vector v = persistence.read(i);
 return vector2Object(v);
 }

 private Object vector2Object(Vector v)
 throws InstantiationException,

Table A.4 Refactorings menu options. This menu is also available from the context menu in the Java edi-
tor. References to modified elements (method or class names, signatures, and so on) throughout the
workspace will be updated, if appropriate, unless you veto them individually by clicking the Preview button
in the Refactoring Wizard. See section 4.2 for an introduction to Eclipse’s refactoring features. (continued)

Java perspective menu reference 317

 IllegalAccessException
 {
 Object o = type.newInstance();
 Iterator vIter = v.iterator();
 while (vIter.hasNext())
 {
 // Use Reflection API to populate
 // Object o with elements from Vector
 }
 return o;
 }

Extract Local Variable
[Alt-Shift-L]

Converts an expression that is used directly to a local variable. In the previous
example, the get() method has the following return statement:

 return vector2Object(v);

With the expression vector2Object(v) selected, this refactoring asks you
to provide a variable name, adds a statement assigning the value of the call to
a variable, and then returns the variable as follows:

 Object o = vector2Object(v);
 return o;

Extract Constant Converts a hard-coded constant (and, optionally, all occurrences of that con-
stant in a class) to a final static field. For example, if you select
3.141592654 in the following example

 double radius(double diameter)
 {
 return(diameter * 3.141592654);
 }

and provide the name PI as the constant name in the Refactoring Wizard, the
class is modified as follows:

 private static final double PI = 3.141592654;
 double radius(double diameter)
 {
 return(diameter * PI);
 }

Convert Local Variable
to Field

Converts a variable declared in a method to a class field.

Table A.4 Refactorings menu options. This menu is also available from the context menu in the Java edi-
tor. References to modified elements (method or class names, signatures, and so on) throughout the
workspace will be updated, if appropriate, unless you veto them individually by clicking the Preview button
in the Refactoring Wizard. See section 4.2 for an introduction to Eclipse’s refactoring features. (continued)

318 APPENDIX A
Java perspective menu reference

Table A.5 Navigate menu options. Three types of commands appear in the navigation menu: com-
mands that alter the way resources are displayed, such as Go Into and Open Type Hierarchy; com-
mands that navigate between resources, such as Open Type Hierarchy and Open Resource; and
commands that navigate within a file, such as Show Outline and Go to Last Edit Location. Some com-
mands (in particular, the Next and Previous commands) change, depending on the context.

Go Into Makes the current selection the root of the display in hierarchical views, such
as Package Explorer and the Navigator view. For example, if you are viewing a
project in the Package Explorer and select a package, only the selected pack-
age will be visible in the Package Explorer.

After you select Go Into, the Up tool button becomes active in the view’s
toolbar; you can click it to return to viewing the whole project.

Go To Has various options, including Up One Level, which is equivalent to the Up tool
button mentioned in Go Into.

Other options allow you to locate packages, types, and unit tests; to move
from one class member to the next or to a previous class member; or to locate
a matching brace in code.

Open Declaration [F3] Locates the file where the type of Java element selected in the editor is
declared, and displays the declaration in the editor.

Open Type Hierarchy
[F4]

Displays the class hierarchy containing the Java element selected in the editor
in the Hierarchy view.

Open Super
Implementation

Locates the implementation of the selected method in the superclass and dis-
plays it in the editor.

Open External
Javadoc [Shift-F2]

Opens the Javadoc entry for the currently selected element.

Open Type [Ctrl-Shift-T] Opens a dialog box that lets you locate a class by typing the first few letters of
its name. The class is opened in the editor.

Open Type in
Hierarchy [Ctrl-Shift-H]

Opens a dialog box that lets you locate a class by typing the first few letters of
its name. The class is opened in the editor and in the Hierarchy view.

Open Resource
[Ctrl-Shift-R]

Opens a search dialog box that lets you locate a resource by typing the first few
letters of its name.

Show In Locates and displays the currently selected resource in another view. For exam-
ple, if a Java source file is selected in the editor, you can use Show In to locate
the file in the Package Explorer view.

Show Outline [Ctrl-O] Provides an outline view as a pop-up window in the editor that can be used to
navigate inside the currently selected file.

Next [Ctrl-.]
Go to Next Problem
Next Match

Depending on context, locates the next item in a list or in the current file. For
example, if you are editing a source file that contains errors, this menu item
appears as Go to Next Problem and takes you to the next error in the file.

Previous [Ctrl-,]
Go to Previous Problem
Previous Match

Depending on context, locates the previous item in a list or current file. While
you’re editing a source file that contains errors, this menu item appears as Go
to Previous Problem and takes you to the previous error in the file.

Java perspective menu reference 319

Go to Last Edit
Location [Ctrl-Q]

Moves to the location of the last edit in the current file in the editor.

Go to Line [Ctrl-L] Locates a specific line number.

Back [Alt-Left Arrow] Locates the previously selected resource (similar to a web browser’s Back button).

Forward
[Alt-Right Arrow]

Locates the resource that was selected before you chose the Back command
(similar to a web browser’s Forward button).

Table A.6 Search menu options

Search [Ctrl-H] Opens the Search dialog box, which has separate tabs for the File, Help, and Java
search options, plus a plug-in search.

File Opens a dialog box you can use to search for text in files. The files can be all files
in the workspace or restricted by file pattern or working set.

Help Opens a dialog box you can use to search for text in the Eclipse documentation.
The documents searched can be limited to those defined in a working set.

Java Opens a dialog box you can use to search for text in Java files. Files can be all
files in the workspace or restricted to a working set.

References
[Ctrl-Shift-G]

Searches for references to a selected Java element. The menu option can be
used to search the workspace or to limit the search to the element’s class hierar-
chy or a working set. The shortcut Ctrl-Shift-G only searches the workspace.

Declarations
[Ctrl-G]

Searches for declarations of a selected Java element’s type. The menu option can
be used to search the workspace or to limit the search to a working set. The
shortcut Ctrl-G only searches the workspace.

Implementors Searches for implementations of the selected Java interface. Options are available
to search the workspace or to limit the search to a working set.

Read Access Searches for statements or expressions that reference the selected class field.
Options are available to search the workspace or to limit the search to the class
hierarchy or a working set.

Write Access Searches for statements or expressions that modify the selected class field.
Options are available to search the workspace or to limit the search to the class
hierarchy or a working set.

Occurrences in File
[Ctrl-Shift-U]

Finds all occurrences of the selected text in a file.

Table A.5 Navigate menu options. Three types of commands appear in the navigation menu: com-
mands that alter the way resources are displayed, such as Go Into and Open Type Hierarchy; com-
mands that navigate between resources, such as Open Type Hierarchy and Open Resource; and
commands that navigate within a file, such as Show Outline and Go to Last Edit Location. Some com-
mands (in particular, the Next and Previous commands) change, depending on the context. (continued)

320 APPENDIX A
Java perspective menu reference

Table A.7 Project menu options

Open Project Opens a project that has previously been closed.

Close Project Closes a project’s resources. A closed project is made unavailable in the work-
space, but its contents are left in the workspace directory on disk. Closing unused
projects saves memory and can reduce build time.

Rebuild Project Forces a complete rebuild of the selected project, including resources that have not
changed.

Rebuild All Forces a complete rebuild of all open projects, including projects and resources that
have not changed.

Generate Javadoc Opens the Javadoc Wizard, which allows you to select projects and resources and
generate Javadocs for them.

Properties Opens a Properties dialog for the currently selected project (or the project to which
the currently selected resource belongs).

Table A.8 Run menu options. Note that in the Debug perspective, this menu has additional options
for controlling execution of code in the debugger.

Run Last Launched
[Ctrl-F11]

Reruns the application that was most recently run. (This is the same as the
Run button on the main toolbar.)

Debug Last
Launched [F11]

Re-debugs the application that was most recently debugged. (This is the
same as the Debug button on the main toolbar.)

Run History Displays a list of recently run applications, from which you can select an
application to run again.

Run As Runs an application with the default settings. Options are available for stan-
dard Java applications, unit tests, or applets. An option is also available for
launching a special runtime instance of the Eclipse Workbench, which is use-
ful for developing plug-ins.

Run Opens a dialog box that lets you configure and launch an application.

Debug History Displays a list of recently debugged applications, from which you can select
an application to debug again.

Debug As Debugs an application with the default settings. Options are available for
standard Java applications, unit tests, or applets. An option is also available
for launching a special runtime instance of the Eclipse Workbench.

Debug Opens a dialog box for configuring and launching an application using the
debugger.

Watch Displays the selected variable or expression in the Expressions view. The
value is updated whenever the program is suspended.

Inspect Displays the selected variable or expression in the Expressions view. The
value displayed is a snapshot and is not updated.

Java perspective menu reference 321

Display [Ctrl-D] Displays the result of evaluating the selected variable or expression in the
Display view, where it can be edited and reevaluated.

Execute [Ctrl-U] Executes the selected code in a Java scrapbook page.

Run to Line [Ctrl-R] Runs the application and suspends it at the selected line.

Step into Selection

[Ctrl-F5]

Steps into the selected method. The method must be in the line of code
where execution is currently suspended. This command is valuable because it
allows you to step into a single method when multiple (and possibly nested)
methods are called in the single line of code.

Add/Remove Breakpoint
[Ctrl-Shift-B]

Adds or removes a breakpoint on the currently selected line, which must be
executable. You can configure the breakpoint’s properties by right-clicking on
it in the editor or by using the Breakpoints view in the Debug perspective.
Options include stopping according to hit count or when a condition is met.
The breakpoint can also be set to suspend either the JVM or just the thread
being debugged.

Add Java Exception
Breakpoint

Sets a breakpoint that suspends execution when the selected exception is
thrown. This option can be configured to break when the exception is caught,
uncaught, or both.

Add/Remove Method
Breakpoint

Sets a breakpoint that suspends execution when a selected method is entered.
(You can use the breakpoint properties to select whether to suspend when
the method is entered, exited, or both.) This type of breakpoint is intended to
be used with a method for which you don’t have the source code. You can set
the breakpoint using the Java class file editor or in the Outline view.

Add/Remove
Watchpoint

Sets a breakpoint on a class field. By default, execution is suspended when-
ever the field is accessed or modified; you can change this setting using the
Breakpoint Properties dialog box. You can also enable suspension based on
hit count or limit the breakpoint to a specific thread.

External Tools Selects an external tool to run, such as an Ant build.

Table A.9 Window menu options

New Window Opens a new Eclipse window. This option is useful for working with two per-
spectives at the same time.

Open Perspective Allows you to open a new perspective from a submenu.

Show View Opens a new view in the current perspective.

Hide Editors
Show Editors

Toggles between hiding and showing the editor pane in the current
perspective.

Lock the Toolbars When selected, toolbars cannot be rearranged.

Table A.8 Run menu options. Note that in the Debug perspective, this menu has additional options
for controlling execution of code in the debugger. (continued)

322 APPENDIX A
Java perspective menu reference

Customize Perspective Allows you to select the items that are available in the current perspective’s
main menu (such as resource types that can be created using the File→New
menu selection) and the toolbar (for instance, tool buttons contributed by
plug-ins).

Save Perspective As Saves the current perspective (perhaps with added and rearranged views) as a
custom perspective. To open a custom perspective, use Window→Open Per-
spective→Other.

Reset Perspective Resets the current perspective to its default.

Close Perspective Closes the current perspective.

Close All Perspectives Closes all perspectives.

Keyboard Shortcuts Displays shortcut keys for navigating between perspectives, view and editors.

Switch to Editor
[Ctrl-Shift-W]

Opens a dialog box that allows you to easily select an open editor.

Preferences Opens a dialog box that lets you change Eclipse settings and preferences. See
section 2.4 for an introduction to configuring Eclipse to your preference.

Table A.10 Help menu options

Welcome Displays the welcome page for the Eclipse platform, the JDT, or the PDE.

Tips and Tricks Displays tips and tricks for the Eclipse platform, the JDT, or the PDE. This
page contains useful information about recently added or lesser-known
features.

Help Contents Displays online documentation. If you’ve downloaded the Eclipse SDK,
guides available include the Workbench User Guide, Java Development
User Guide, Platform Plug-in Developer Guide, JDT Plug-in Developer
Guide, and PDE Guide.

Software Updates Obtains updates from the Eclipse web site and manages configuration
information (allowing a previous configuration to be restored). This option
is also used to install plug-ins from Eclipse update sites.

About Eclipse Platform Displays the Eclipse version number and information about installed fea-
tures and plug-ins.

Table A.9 Window menu options (continued)

323

BCVS installation
procedures

324 APPENDIX B
CVS installation procedures

Concurrent Versions System (CVS) can be deployed several ways. The simplest
approach, called local access, is to put the repository on a disk that is shared by
everybody on the team. The CVS client (which can be either a command-line or a
GUI application) uses lock files to synchronize access to the files. No special server
is required. This approach isn’t recommended, because nothing prevents users
from damaging the repository—especially if they inadvertently read or write to
the repository directly without using the CVS client.

 A much better way is to use a CVS server that prevents direct access to the repos-
itory. Officially, Eclipse only supports CVS version 1.11.1p1 or higher on UNIX and
Linux. However, a port of CVS, CVSNT, is available for Windows NT/2000/XP; even
though it isn’t officially supported, CVSNT version 1.11.1.1 and greater generally
work well with Eclipse. If you must use Windows, another option is to install Cyg-
win, a UNIX emulator that runs on Windows platforms.

 If you will be using CVS for serious development, you should have a machine
dedicated as a CVS server, and you should consider using UNIX or Linux on this
machine. One major advantage of using CVS on UNIX or Linux is that you have
a better choice of authentication methods—SSH in particular is recommended.
CVSNT only supports the pserver protocol, which, like Telnet, sends the password
over the network in clear text, and is therefore unsuitable for use on the Inter-
net. The other Windows alternative, Cygwin, is more difficult to install but does
support SSH.

 The major disadvantage of using UNIX or Linux is that they require an under-
standing of system administration and security issues, especially if you will be
connecting the machine to the Internet. However, if you are part of a large team,
you likely will have someone responsible for setting up and maintaining this server.

B.1 Installing CVS on UNIX and Linux

Most UNIX and Linux distributions include the two packages—CVS and the SSH
server—required to set up the system as a CVS server using SSH authentication.
CVS is a single executable that contains code for running both as a client and as a
server; it is usually located in the /usr/bin directory. You may wish to verify that
you can run CVS by entering cvs --help at a command prompt:

[user@cvsserver user]$ cvs --help

This command should display a concise list of CVS options. If instead you get the
error Command not found, you need to locate the CVS executable and add its direc-

Installing CVS on UNIX and Linux 325

tory to your path. One way to do this for all users is to add it to the path defined
in the /etc/profile file.

 If CVS is not installed (or if you have a version older than 1.11), you can
download the latest version from http://www.cvshome.org. Binaries are available
for popular distributions of Linux, but it is easy to download the sources and
build a version for other UNIX and Linux versions as well.

B.1.1 Creating the CVS repository

Once you have CVS installed, you can create your CVS repository. Follow these steps:

1 Log in as superuser.
2 Create a group named cvs and a user named cvs who belongs to the cvs

group, by modifying the /etc/group and /etc/passwd files. At this time,
you can also add to the cvs group any users who will be using CVS.

3 Create a directory for the repository. This directory can be virtually any-
where, but /usr/local/repository is a typical location:
[root@cvsserver local]# cd /usr/local
[root@cvsserver local]# mkdir repository

4 Initialize the directory as a CVS repository using the following cvs command:
[root@cvsserver local]# cvs -d /usr/local/repository init

In Linux, files and directories are associated with both an owner and a group. In
order to allow everyone in the cvs group access to the repository, you need to
make sure the repository and all the files in it belong to the cvs group, and that
the group has full access to the repository. To ensure this, first change the owner-
ship and group of the repository and its subdirectories to cvs:

[root@cvsserver local]# chown -R cvs.cvs repository

Next, change the permissions:

[root@cvsserver local]# chmod -R 4774 repository

This command, which assigns permissions, might need a little explanation.
chmod often takes symbolic values, but it can also take a three- or four-digit abso-
lute value. As you may know, the last three digits determine the permissions
granted to the file owner, the members of the group, and everyone else; in this
case, the two 7s allows full access to owner and group, respectively, and the 4
allows read-only access for everyone else.

 If there are four digits, as there are here, the first one specifies how user and
group IDs will be set when the user creates a new file; setting this digit to 4 means

326 APPENDIX B
CVS installation procedures

the group will be set according to the parent subdirectory. You need to do this
because otherwise, when a cvs user creates a new file, the group will be set to a user’s
default group rather than cvs. That would mean other members of the cvs group
couldn’t access the file unless they also belonged the creator’s default group. (To
learn more about the chmod command, check out its manual page: Type man chmod
at a UNIX/Linux prompt.)

 That is all you need to do to set up a repository. If you were using local access,
as described earlier, you could begin creating modules—the CVS equivalent of a
project—and checking code in and out, using the command-line version of CVS.
But, as we warned, this is not a reliable way to use CVS; and more to the point here,
this approach is not supported by Eclipse. Instead, you need a way to access this
repository using some form of remote access.

B.1.2 Setting up SSH remote access

There are several different options for accessing CVS remotely, but here we will
consider only the two options supported directly by Eclipse: SSH and pserver.
SSH (Secure Shell) is recommended because it is the most secure; it’s also the eas-
iest to set up, assuming you already have SSH installed on your machine. Of the
two versions of SSH, SSH1 and SSH2, Eclipse only supports SSH1 by default; but
this shouldn’t cause a problem, because newer SSH servers supporting SSH2 usu-
ally provide backward compatibility for SSH1.

 The major drawback to using SSH is that Windows clients other than Eclipse
(such as standard command-line clients or GUI clients) may not support SSH
without additional software and configuration. In this case, as long as your server
is on an internal network and you aren’t overly concerned about security, pserver
is a reasonable option.

 To use SSH, the only thing you need to do is make sure the SSH server is run-
ning on your CVS server machine. Eclipse will take care of all the details of log-
ging in and executing CVS commands for you on the client side. You can verify
that SSH is running by typing the following command at the command prompt:

[user@cvsserver user]$ ps cax | grep sshd

The ps cax command normally displays all the programs that are currently run-
ning on the system, but here the pipe command (|) causes the output from ps to
be sent as input for the grep program. There it is searched for the text sshd, the
name of the SSH daemon (or server) executable. Any line including this text is
printed out. If this command doesn’t print out anything, you probably don’t
have SSH running—one possibility is that it has a different name.

Installing CVS on UNIX and Linux 327

 If sshd is not running, search your system to see if SSH is installed. Normally,
the sshd executable is found in the /usr/sbin directory. You can start it manually,
but a better option is to modify the system startup files (for example, /etc/rc) to
start sshd automatically when the system boots. If SSH is not installed on your
system, you can download a free version from http://www.openssh.com.

B.1.3 Setting up pserver remote access

Using pserver is only a little more involved than using SSH. You need to set up your
machine to listen for incoming pserver requests and pass them to CVS. Two steps
are required to set this up: associating the symbolic name cvspserver with the default
pserver port, 2401; and configuring your port-mapping service—either inetd or
xinetd—so that it forwards requests from this port to CVS. To find out whether you
are using inetd or xinetd, enter the command ps cax to list all the processes run-
ning on your machine; then see which appears in the list. When you do this, note
the process id (PID) associated with inetd or xinetd; you’ll need it later.

 The first step, defining the symbolic name, has probably already been done
for you: The file /etc/services should contain the following lines for cvspserver,
but if doesn’t, add them:

cvspserver 2401/tcp # CVS client/server operations
cvspserver 2401/udp # CVS client/server operations

If you are using inetd, you don’t call CVS directly; instead you call tcpd, the TCP
wrappers program, and have it call CVS. Doing so provides a little extra security,
because tcpd uses the configuration files /etc/hosts.allow and /etc/hosts.deny to
determine which machines (by IP address or IP address range) are allowed to
access CVS. Add the following line to inetd.conf:

cvspserver stream tcp nowait root /usr/sbin/tcpd /usr/bin/cvs -f --
➥ allow-root=/usr/local/repository pserver

To allow everyone with an IP address beginning with 192.168.1 access, the
hosts.allow file should contain the following line:

ALL: 192.168.1.

This overrides any settings in the hosts.deny file, so you can prohibit everyone
else by having this line in hosts.deny:

ALL: ALL

If you are using xinetd instead of inetd, there’s no need to use tcpd. You can call
CVS directly, because the TCP wrapper’s functionality is built into xinetd; it auto-
matically uses the /etc/hosts.allow and /etc/hosts.deny files. For xinetd, rather

328 APPENDIX B
CVS installation procedures

than adding a line to an existing file, you need to create a new configuration file
called cvspserver in the /etc/xinet.d directory, with the following contents:

service cvspserver
{
 disable = no
 socket_type = stream
 protocol = tcp
 wait = no
 user = root
 server = /usr/sbin/cvspserver
 server_args = -f --allow-root=/usr/local/repository
}

If this file already exists, you probably only need to change the value of disable
from yes to no.

 To have the changes take effect, you need to send inetd or xinetd a hangup
signal, using the kill command. To do this, you need to determine the process ID
of inetd or xinetd using the ps cax command, as mentioned earlier, and enter the
following command, substituting the appropriate value for pid:

[root@lx01 local]# kill -SIGHUP pid

Note that on some UNIX systems the appropriate symbolic constant for the hangup
signal is HUP, rather than SIGHUP. You can find out the constant on your system by
running the kill command with the -l option, which lists all valid signals.

 If you’ve created a repository and set up your system to use either SSH or
pserver, you are ready to begin checking code into and out of CVS using Eclipse.

B.2 Installing CVS on Mac OS X

The Apple Macintosh OS X operating system is based on BSD UNIX. So, installing
CVS is similar to doing so on UNIX and Linux, as described in section B.1, with
the following differences:

■ CVS for Macintosh is available as part of the Mac OS X Developer Tools. At
this writing, however, the latest release of Developer Tools (December 2002)
includes CVS version 1.10, which does not work properly with Eclipse. You
need to download the source for the latest version from http://www.cvshome.
org and build it yourself. This is surprisingly easy to do, because OS X is
based on a fairly standard version of BSD UNIX. After decompressing the
source, refer to the file INSTALLING in the root directory of the distribution.

■ SSH comes as part of Mac OS X, but it is not enabled by default. To start it,
open a Terminal window and edit the file /etc/hostconfig using your favor-

Installing CVSNT on Windows 329

ite UNIX text editor, such as vi or pico. (If you haven’t enabled root access,
you’ll need to use the sudo command to perform administrative chores.
Instead of typing vi /etc/hostconfig, type sudo vi /etc/hostconfig.)
Change the value of SSHSERVER from -NO- to -YES-.

■ You create and manage users and groups using the NetInfo utility.

B.3 Installing CVSNT on Windows

If you are only interested in learning how to use CVS, having CVS running on
your Windows NT/2000/XP machine may be the most convenient option—espe-
cially if you don’t have access to a Linux, UNIX, or Mac OS X machine. Or per-
haps, despite advice to the contrary, you really do want to use a Windows-based CVS
server. You need CVSNT, a version of CVS that is being developed separately from
the main CVS version. This version of the CVS server runs as an NT service and can
perform authentication using Windows usernames and passwords.

 The main complaint about CVSNT is that it is less mature than the mainstream
CVS code base and, with fewer developers working on it, it tends to have more bugs.
Nonetheless, many people are working quite happily with CVSNT, despite the
occasional glitch.

 To install CVSNT, download the latest version from http://www.cvsnt.org and
run the executable (for example, cvsnt-1.11.1.3-69.exe). Then, follow these steps:

1 On the opening screen, click Next to start installation.
2 You are given the opportunity to accept the license under which CVSNT

is released—the Gnu Public License (GPL)—and asked to agree to its
terms. To proceed, select I Accept the Agreement and click Next.

3 Select the folder where CVSNT should be installed; the default is C:\Program
Files\cvsnt. Click Next.

4 A screen appears, warning you to turn off Filesystem Realtime Protection.
Click Next.

5 In the Select Components window, make sure Server Components is
checked. The remaining default selections should be fine. Under Protocols,
make sure the Password Server (pserver) protocol is checked. Click Next.

6 Select a Start Menu folder (such as CVSNT) and click Next.
7 In the Select Additional Tasks window, make sure Install Cvsnt Service

and Cvsnt Lock Service are checked. Click Next.

330 APPENDIX B
CVS installation procedures

8 In the Review Options window, click Install.
9 When you’re finished, click OK.

After you install CVSNT, start it by choosing Start Menu→Programs→CVSNT→Ser-
vice Control Panel. Create a repository as follows:

1 Click the Repositories tab. Make sure Repository Prefix is not checked.
(Eclipse does not support this option.)

2 Click Add to add a repository, and enter a path such as c:\repository. A
message will appear, saying the path does not exist and asking if you
want to create it. Click Yes.

3 Click Apply.
4 Return to the Service Status dialog box and click Stop for both CVS Ser-

vice and CVS Lock Service. After they are stopped (the Start buttons are
no longer be grayed out), click Start for each.

Check the new directory’s permissions and make sure all users who will be using
the CVS repository have full control.

B.4 Installing Cygwin CVS and SSH on Windows

Cygwin is a free UNIX emulation environment that runs inside all versions of Win-
dows beginning with Windows 95 (with the exception of Windows CE). It provides
many standard UNIX packages, and most UNIX programs compile and run with-
out change, including CVS and SSH. Because of the added step of installing and
configuring a UNIX-like environment, setting up CVS with Cygwin is more com-
plex than the self-contained CVSNT server, but it is much more secure.

 Before you can download Cygwin, you must first download a small installa-
tion program, setup.exe, from http://www.cygwin.com/setup.exe. This program
lets you select and download the core Cygwin package and the packages you
need for CVS and SSH. On Windows NT, 2000, and XP machines, make sure you
are logged in as administrator and perform the following steps:

1 Run setup.exe and click Next to leave the introductory dialog box.
2 Select Install from Internet and click Next.
3 Accept the default destination for Cygwin, c:\cygwin, or enter another

location if you prefer.

Installing Cygwin CVS and SSH on Windows 331

4 Assuming you are using a dedicated server for CVS as recommended,
under the option Install For select Just Me. (If you or others will also
using the machine for other purposes, you can select All Users, but
again, this is not recommended.)

5 Make sure Default Text File Type is set to UNIX. If you don’t do this, some
programs won’t behave correctly. Click Next.

6 Enter a download location for the files and click Next.
7 The next screen allows you to set up your Internet connection. Fill it in

appropriately and click Next.
8 Setup.exe downloads a list of mirror locations from which you can get

the files. Choose one close to you and click Next.
9 A list of the packages available is downloaded, and the Select Packages

screen appears. Initially the screen shows all the package categories, but
this isn’t very helpful. Click the View button until the text beside it says Full.

10 Scroll down the list until you find CVS listed on the right-hand side; click
the Skip column entry on the left. Doing so displays the version of CVS to
be downloaded.

11 Similarly, select the packages CYGRUNSRV (which you need to install SSH
as a service, if you are using Windows NT, 2000, or XP) and OpenSSH.

12 Click Next, and installation begins.
13 Once Cygwin has finished installing, you are asked to create an icon on

your desktop, Start menu, or both. Choose as you see fit.

You now have a working installation of Cygwin. You can select the desktop icon
or the menu item, or run bash.bat in the Cygwin bin directory to get to a bash shell
prompt. You next need to configure SSH and start it at the shell prompt as follows:

1 To configure SSH, enter the command ssh-host-config.
2 You are presented with several options. Answer yes to allow privilege sep-

aration and yes to install SSH as a service; this will register SSH as a ser-
vice to be started automatically when the system is started. Enter ntsec
for the CYGWIN environment variable.

3 To start SSH as a service immediately, without rebooting, enter the com-
mand cygrunsrv -S sshd.

The final step is to create a CVS repository. To do this, follow the steps described
in section B.1.

332 APPENDIX B
CVS installation procedures

B.5 Troubleshooting the CVS installation

If you’ve followed the instructions in this appendix carefully and set up groups
and users as described, chances are you won’t have any problems. However, if
you do, the best source of information is the http://www.cvshome.org site. We can
cover only a few common issues here.

 The most common error you are likely to experience is the message cvs error:
cannot open /root/.cvsignore: Permission denied when you try to connect from Eclipse
using the pserver protocol. In Linux, this error can be caused by stopping and
restarting the inetd or xinetd daemon while logged in as root, rather than send-
ing the daemon a hangup signal to re-read the configuration file. This happens
because the daemon inherits root’s environment when started this way. (This
doesn’t happen when it is started normally at startup.) You may be able to fix the
problem by stopping the daemon again, unsetting the environment variable
HOME (the way to do this depends on which shell you are using), and restarting the
daemon. Another possible cause is omitting -f from the cvspserver line in the
inetd.conf file.

 A problem that may occur on Windows is a failure to create a directory when
you first try to add a new project from Eclipse, using the Team→Share Project
option from the Package Explorer context menu. As a workaround, you can add
the directory to the CVS repository manually. You can then repeat the steps for
sharing a new project. Eclipse will notify you that the project already exists and
ask if you want to synchronize your local project with the remote module. Click
Yes. In the next message, Eclipse will ask which branch tag you would like to syn-
chronize with; leave HEAD selected and click OK.

B.6 Backing up the CVS repository

One of the incidental benefits of using a source control system like CVS, which cre-
ates a central repository for your source code, is that it simplifies making backups.
There are many backup schemes, manual and automated, but the most impor-
tant thing is to choose one, do it regularly, and keep some of the backups off-site.
Also, test your backups to make sure you are able to recover in the event of a disaster.

 There is nothing special about the CVS files; you can copy them to tape or burn
them on a CD. It’s a good idea to schedule backups when people won’t be using
the system, and it’s an even better idea to disable logins while performing back-
ups to prevent saving the repository in an inconsistent state—which could occur
if someone checks in files while the backup is going on.

333

CPlug-in extension points

334 APPENDIX C
Plug-in extension points

The plug-ins that form the Eclipse Platform define numerous extension points your
plug-ins can use to add functionality to Eclipse. Typically, every major new Eclipse
project adds its own plug-ins to the list. This appendix’s table C.1 summarizes
the extension points in the Platform SDK, including the JDT and Team plug-ins.

 Treat this appendix like a ball of threads—you simply have to grab the one
you want and start following where it leads. Often the biggest hurdle to getting
started with something like this is finding out where to begin. This appendix
provides that starting point for extensions.

 Once you’ve picked an extension point, you can read its detailed documenta-
tion by going to the Plug-in Manifest Editor’s Extension page, clicking the Add
button, selecting Schema Based Extensions, selecting an extension point, and
then clicking Details. See also chapters 8 and 9, which provide examples of using
some of these extension points.

The id attribute
We have worked extensively with the Eclipse development team to improve the
quality of the online documentation on extension points. However, one detail
that is not covered well is the use of the id attribute. Some extension points need
the id attribute to be specified on the extension itself (for example, the markers
extension); some need it to be specified on elements within the extension (for
example, editors); and others need something different. This is likely due to the
evolution of the Eclipse API over time. Generally speaking, once an API has been
released it cannot be changed, so we are stuck with a few kinks in the thread.
We’ve examined each extension point to see how you are supposed to use the id
attribute and added a few notes to help you out.

Deprecated, obsolete, and internal extension points
The Extension page shows a few extension points you should not use in your
plug-ins. In the descriptions in table C.1, we use the following designations:

■ Deprecated means the extension point still works in the current version but
will become obsolete in a future version. Avoid it in any new code.

■ Obsolete means the extension has been removed from the current version.
Although the syntax is accepted, it has no effect.

■ Internal or experimental means the extension point is documented but is
marked as internal so it is likely to change in future releases. The ones
marked experimental are more likely to be supported in an official way
based on user feedback.

Plug-in extension points 335

■ Unimplemented indicates an extension that was not yet ready at the time of
the 2.1 release but may be supported in future releases.

Release introduced
The Since column in table C.1 indicates the Eclipse Platform version number in
which the extension point was first introduced. If this column is blank, the exten-
sion point has existed since version 1.0.

Table C.1 Extension points supported in the Eclipse Platform SDK

Extension point Description Since Notes

org.eclipse.ant.core.
antTasks

Associates Ant tasks with classes in your plug-in,
to extend what Ant can do when run inside Eclipse.

3

org.eclipse.ant.core.
antTypes

Associates Ant data types with classes in your
plug-in.

3

org.eclipse.ant.core.
extraClasspathEntries

Supplies extra class libraries (JAR files) for Ant to
use.

3

org.eclipse.compare.
contentMergeViewers

Provides a compare/merge viewer factory for one
or more file types.

2

org.eclipse.compare.
contentViewers

Provides a viewer factory for one or more file
types.

2

org.eclipse.compare.
structureCreators

Provides a class to create a tree structure for one
or more file types.

2

org.eclipse.compare.
structureMergeViewers

Provides a viewer factory for one or more struc-
tured file types.

2

org.eclipse.core.
resources.builders

Registers an incremental builder under a symbolic
ID and human-readable name.

1

org.eclipse.core.resources.
fileModificationValidator

Provides a class for team providers to handle the
validate-save and validate-edit operations.

2.0 3

org.eclipse.core.resources.
markers

Registers a custom marker with optional super-
types and attributes, including some already-
defined supertypes.

1

org.eclipse.core.resources.
moveDeleteHook

Provides a class for resource move and delete
operations. Only one hook is allowed.

2.0 3

org.eclipse.core.resources.
natures

Installs a custom nature that can be used in user
projects.

1

org.eclipse.core.resources.
teamHook

Registers a class for team providers to handle
specialized events like verifying link creation.

2.1 3

336 APPENDIX C
Plug-in extension points

org.eclipse.core.
runtime.applications

Defines a top-level application that can be
invoked on the Eclipse command line with the
–application option.

1

org.eclipse.core.
runtime.urlHandlers

Adds URL handlers to the Platform search path. 3

org.eclipse.debug.core.
breakpoints

Defines custom breakpoints. 2

org.eclipse.debug.core.
launchConfigurationCompar-
ators

Declares specialized Java comparators to com-
pare attributes.

2

org.eclipse.debug.core.
launchConfigurationTypes

Specifies the class used to run and debug appli-
cations of various types.

2

org.eclipse.debug.core.
launchers

Obsolete in 2.0: Use the launchConfigura-
tionTypes extension point.

n/a n/a

org.eclipse.debug.core.
sourceLocators

Specifies classes to help the debugger locate
source code.

2

org.eclipse.debug.core.
statusHandlers

Registers error handlers for debugger status
codes.

2

org.eclipse.debug.ui.
consoleColorProviders

Supplies code to manage the color of console
output.

2.1 2

org.eclipse.debug.ui.
consoleLineTrackers

Supplies code to listen for lines written to the
console.

2.1 2

org.eclipse.debug.ui.
debugActionGroups

Groups several actions together so they can be
made visible or invisible together.

2

org.eclipse.debug.ui.
debugModelPresentations

Defines classes to render and present the labels,
icons, and editors for the specified debug models.

2

org.eclipse.debug.ui.
launchConfigurationTab-
Groups

Contributes a group of tabs for specific launch
configuration types (for both run and debug).

2

org.eclipse.debug.ui.
launchConfigurationType-
Images

Associates images with the specified launch con-
figuration types.

2

org.eclipse.debug.ui.
launchGroups

Defines a group of launch configurations to be
displayed together.

2.1 2

org.eclipse.debug.ui.
launchShortcuts

Adds shortcuts to the Run and/or Debug menus in
one or more perspectives.

2

Table C.1 Extension points supported in the Eclipse Platform SDK (continued)

Extension point Description Since Notes

Plug-in extension points 337

org.eclipse.help.
appserver.server

Internal. Adds an application server for help and
other plug-ins.

1

org.eclipse.help.browser Registers HTML browsers. 2

org.eclipse.help.contexts Defines context-sensitive (F1) help for a plug-in. 3

org.eclipse.help.
luceneAnalyzer

Registers natural-language text analyzers used for
indexing and searching the help.

3

org.eclipse.help.support Defines a help system to replace the built-in one.
Not recommended except for custom applications.

3

org.eclipse.help.toc Contributes one or more tables of contents files
for this plug-in.

3

org.eclipse.help.webapp Internal. Registers the name of the help web
application plug-in.

2.1 3

org.eclipse.jdt.core.
classpathContainerInitial-
izer

Declares lazily loaded custom classpath containers. 2.0 2

org.eclipse.jdt.core.
classpathVariableInitial-
izer

Declares lazily loaded custom classpath variables
for use in Java build paths.

2.0 3

org.eclipse.jdt.core.
codeFormatter

Defines new code formatters. 2.0 3

org.eclipse.jdt.debug.ui.
vmInstallTypePage

Provides the JRE launch configuration pages for
custom VM types.

2

org.eclipse.jdt.junit.
testRunListeners

Registers code to be notified about the execution
of a test.

2.1 3

org.eclipse.jdt.launching.
classpathProviders

Registers custom source and classpath providers. 2.1 2

org.eclipse.jdt.launching.
runtimeClasspathEntryRe-
solvers

Provides classes to look up classes and source
files for the given classpath variables and/or con-
tainers.

2

org.eclipse.jdt.launching.
vmConnectors

Provides custom ways to connect to the JVM for
debugging and launching.

2

org.eclipse.jdt.launching.
vmInstallTypes

Defines new types of Java virtual machine instal-
lations.

2

org.eclipse.jdt.ui.
classpathContainerPage

Adds wizard pages to create or edit classpath
container entries.

4

Table C.1 Extension points supported in the Eclipse Platform SDK (continued)

Extension point Description Since Notes

338 APPENDIX C
Plug-in extension points

org.eclipse.jdt.ui.
javadocCompletionProcessor

Defines Javadoc completion processors (for
example, to suggest xdoclet tags).

2

org.eclipse.jdt.ui.
javaEditorTextHover

Defines new types of hovering behavior in Java
editors.

2

org.eclipse.jdt.ui.
javaElementFilters

Adds custom filters for views that show Java ele-
ments (such as the Package Explorer).

2

org.eclipse.pde.ui.
newExtension

Experimental. Defines wizards to create new
extensions in the PDE’s manifest editor.

2

org.eclipse.pde.ui.
projectGenerators

Experimental. Defines wizards to create the initial
content of the PDE plug-in projects.

2

org.eclipse.pde.ui.
templates

Experimental. Defines templates that are used to
generate code for new extensions.

2

org.eclipse.search.
searchPages

Adds tabs to the Search dialog. 2

org.eclipse.search.
searchResultSorters

Provides custom sorting options in the Search
view.

2

org.eclipse.team.core.
fileTypes

Declares files as being either text or binary, based
on their extension.

3

org.eclipse.team.core.ignore Adds patterns to the version control ignore list. 3

org.eclipse.team.core.
projectSets

Provides handlers for reading and writing project
sets (collections of team-shared projects).

2

org.eclipse.team.core.
repository

Defines new team providers. 2.0 2

org.eclipse.team.ui.
configurationWizards

Supplies wizards that take care of associating
projects with team providers.

2

org.eclipse.ui.
acceleratorConfigurations

Deprecated in 2.1: Use the commands extension

instead. Defines accelerator configurations that
the user can choose from the Preferences page.

2.0 2

org.eclipse.ui.
acceleratorScopes

Deprecated in 2.1: Use the commands extension

instead. Defines scopes that limit where accelera-
tor sets can be active.

2.0 2

org.eclipse.ui.
acceleratorSets

Deprecated in 2.1: Use the commands extension

instead. Defines collections of keyboard shortcuts
for workspace actions.

2.0 4

org.eclipse.ui.
actionDefinitions

Deprecated in 2.1: Use the commands extension

instead. Defines actions.
2.0 2

Table C.1 Extension points supported in the Eclipse Platform SDK (continued)

Extension point Description Since Notes

Plug-in extension points 339

org.eclipse.ui.
actionSetPartAssociations

Associates action sets with Workbench parts that
are visible when the Workbench part is active.

4

org.eclipse.ui.actionSets Defines action sets (menu or toolbar items) that
appear in a view that the user has customized.

2

org.eclipse.ui.capabilities Unimplemented in 2.1. Registers new project
capabilities.

n/a n/a

org.eclipse.ui.commands Defines commands, command categories, and
default key bindings.

2.1 4

org.eclipse.ui.decorators Adds decorators that modify the icon or label of
items in a view depending on its state.

2.0 2

org.eclipse.ui.
documentProviders

Registers document provider classes for the given
extensions or input types. These are used when
opening editors.

2

org.eclipse.ui.dropActions Defines a handler so that objects from this plug-in
can be dropped into views of other plug-ins.

2

org.eclipse.ui.
editorActions

Adds actions to editor menus and toolbars that
were registered by other plug-ins.

2

org.eclipse.ui.editors Adds new editors to the Workbench. 2

org.eclipse.ui.
elementFactories

Defines element factories, which are used to recreate
objects saved to disk when Eclipse is shutting down.

2

org.eclipse.ui.
exportWizards

Creates wizards that appear in the Export dialog. 2

org.eclipse.ui.
fontDefinitions

Registers new fonts for use by the Workbench. 2.1 2

org.eclipse.ui.
importWizards

Creates wizards that appear in the Import dialog. 2

org.eclipse.ui.markerHelp Provides a way to get help on markers. 2.0 3

org.eclipse.ui.
markerImageProviders

Provides images for new marker types. 2.1 2

org.eclipse.ui.
markerResolution

Adds classes that propose quick fixes for prob-
lems that are marked with a specific marker type.

2.0 3

org.eclipse.ui.
markerUpdaters

Defines marker update strategies that are used to
update the marker’s attributes based on its posi-
tion and text when its resource is saved.

1.0 2

org.eclipse.ui.newWizards Adds wizards to the New dialog, optionally creat-
ing categories for them to go in.

2

Table C.1 Extension points supported in the Eclipse Platform SDK (continued)

Extension point Description Since Notes

340 APPENDIX C
Plug-in extension points

Notes

1 The id attribute is specified on the <extension> tag using a relative ID,
and the extension can contain only one element. Eclipse prepends the ID
with the plug-in’s ID. For example:

<extension point="org.eclipse.core.resources.builders"
 id="mybuilder"

org.eclipse.ui.
perspectiveExtensions

Extends perspectives defined by other plug-ins.
This allows you to add menu and toolbar items,
shortcuts, views, and so on.

4

org.eclipse.ui.
perspectives

Defines new perspectives. 2

org.eclipse.ui.popupMenus Adds items to pop-up menus tied to objects,
views, or editors defined by other plug-ins.

2

org.eclipse.ui.
preferencePages

Adds pages to the Preferences dialog. 2

org.eclipse.ui.
projectNatureImages

Defines small icons used to decorate project
images, based on their nature.

2

org.eclipse.ui.
propertyPages

Adds property pages for workspace objects of a
given type.

2

org.eclipse.ui.
resourceFilters

Adds predefined filters to views that display
resources (such as the Navigator view).

3

org.eclipse.ui.startup Marks the plug-in for loading when Eclipse is
started.

2.0 3

org.eclipse.ui.viewActions Adds items to a view’s menu or toolbar. 2

org.eclipse.ui.views Defines additional views for the Workbench. 2

org.eclipse.ui.workingSets Defines working set wizard pages. 2.0 2

org.eclipse.update.core.
featureTypes

Creates a new feature type for alternate packag-
ing and verification schemes.

1

org.eclipse.update.core.
installHandlers

Defines a global install handler that features
being updated can reference.

1

org.eclipse.update.core.
siteTypes

Defines a custom update site layout. 1

org.eclipse.update.ui.
searchCategory

Internal. Adds new search categories in the
Update Manager.

2

Table C.1 Extension points supported in the Eclipse Platform SDK (continued)

Extension point Description Since Notes

Plug-in extension points 341

 name="My Builder">
 <builder>
 <run class="com.example.builders.MyBuilder" />
 </builder>
</extension>

2 The id attribute is specified on the object inside the <extension> tag,
and the extension can contain more than one object. The ID must be
fully qualified. For example:

<extension point="org.eclipse.ui.views">
 <view id="com.example.viewone"
 name="One"
 class="com.example.views.One" />
 <view id="com.example.viewtwo"
 name="Two"
 class="com.example.views.Two" />
 ...
</extension>

3 The id attribute is not used at all, so it can be omitted.
4 This involves some other, nonstandard use of the id attribute (consult

the online documentation).

343

DIntroduction to SWT

344 APPENDIX D
Introduction to SWT

This appendix introduces the Standard Widget Toolkit (SWT) and specifically covers:
■ What SWT is
■ SWT architecture
■ SWT with events and threads
■ How to run SWT code

SWT was developed by IBM as a replacement toolkit for the Abstract Window
Toolkit (AWT) and Swing. IBM’s goal was to create a GUI toolkit that would look
and behave like the natural OS widgets and perform with the same speed. In this
appendix we will look at what AWT and Swing did and compare the approach
taken by IBM. After that, we will discuss how to use SWT, pointing out important
concepts and topics along the way.

D.1 What is the Standard Widget Toolkit?

The Eclipse Platform Technical Overview (http://www.eclipse.org/whitepapers/
eclipse-overview.pdf) describes SWT as a “widget set and graphics library inte-
grated with the native window system but with an OS-independent API.” Before
analyzing this statement further, let’s look at the first graphical API offered in
Java version 1.0: the Abstract Window Toolkit (AWT). AWT provided an API for
building graphical components such as labels, text boxes, buttons, lists, and
menus and delegated to the operating system the task of providing its specific
implementation of the component. When you build an AWT text box, the operat-
ing system constructs its text box and displays it on the application’s window—a
Java text box on Windows looks like a Windows text box, and a Java text box on
Macintosh looks like a Macintosh text box.

 The problem with AWT is that Sun only implemented the widgets that were
common among all platforms that supported Java. To address this issue, Sun,
working with Netscape, introduced Swing, which was an attempt to make a wholly
cross-platform widget set. To achieve this goal, they wrote everything in Java,
rather than delegating to the OS. This approach helped Java become more use-
ful in terms of UI, but at a cost:

■ The controls did not match the look of the platform on which they where run.
■ The controls performed much worse compared to the native implementations.

Sun tried to address the first issue by developing what it called a pluggable look-
and-feel for each OS. However, although this approach addressed part of the

SWT architecture 345

problem, Sun was unable to keep up with changing operating systems. For
instance, a Windows look-and-feel looks the same on Windows 95, Windows 98,
Windows ME, Windows 2000, and Windows XP, whereas the native applications
look differently depending on which version is running.

 Sun has made great strides in addressing the performance issues, but ulti-
mately an emulated component can never perform as well as its native equiva-
lent. A translation phase always occurs in the Java Virtual Machine (JVM), which
converts the emulated component to a set of native painting instructions.

 During the development of Eclipse, IBM developed a new approach to the
problem, which is something of a hybrid of the two Sun approaches. SWT is a set
of widgets that accesses the native controls through the Java Native Interface
(JNI). Only those few controls that are not present on a particular OS are emu-
lated. The downside of this approach is that a native library is required for each
platform on which Eclipse/SWT is deployed. However, the benefit is that applica-
tions look and perform as well as native applications. And, as of the 2.1 release
of Eclipse, SWT is supported on most major desktop operating systems and on
the Pocket PC.

D.2 SWT architecture

Having talked a little about what SWT is, let’s look at it graphically. As you can see
in figure D.1, SWT is built up of three basic components: A native library that talks
to the OS; a Display class that acts as an interface through which the SWT talks to
the GUI platform; and a Shell class that acts as the top-level window of the appli-
cation, which can contain widgets (another term for controls and composites).

 Before we continue, let’s explore some of the terms we just introduced:
■ Display—The best way to think of the Display class is as a butler. It carries

out all the important tasks and saves you from dealing with them. One of

Figure D.1
How the SWT widgets fit
together in regard to each
other and the underlying OS

346 APPENDIX D
Introduction to SWT

the most important jobs the class does is to translate the native platform’s
events into those suitable for use within SWT and vice versa. When devel-
oping your own application, you will normally have little to do with the
Display class, other than to create it before all other windows.

■ Shell—Basically, a window the user sees that is ultimately controlled by the
OS’s Window Manager. Shells are used for two different types of windows.
The first is the top-level window of your application, upon which the rest
of your GUI is built. In this case, Shell is created as a child of the Display
class. The other type is a window that is the child of another window; for
instance, dialog boxes. In this case, Shell is created as a child of the Shell
upon which it is to appear.

■ Widget—This term refers to controls and composites; you will notice through-
out the SWT documentation that the three terms are used interchangeably. At
its simplest, a widget is a GUI object that can be placed inside another widget.

■ Control—A GUI item that has an OS counterpart; for instance, a button, text
area, or menu.

■ Composite—A widget that can have children; examples are toolbars and trees.
The best example is the canvas, which you use to build up complex user
interfaces with the help of sub-canvases using different layouts.

The SWT architecture was designed to mimic the platform application structure,
so it has an important effect on the creation of widgets and disposal of resources.

D.2.1 Widget creation

When you’re creating a widget in SWT, you need to take into account how it is
also created in the underlying OS. Every control has a similar constructor that
takes two arguments: the first specifies what the parent widget is, and the second
specifies what the style of the widget should be. This is a requirement of how
many underlying OSs work. When the SWT object is created, the equivalent OS
object is also created, and it needs to know what the parent is. This also applies
to the style settings for a number of widgets; once they are created, the style can-
not be changed. (A style is a hint to the OS about how a widget looks. For instance,
when you’re creating a Button, the style defines what type of button it is: radio,
push, checkbox, and so on.)

D.2.2 Resource disposal

Normally, when you’re using Swing/AWT, you simply create your widgets, images,
fonts, and so on without worrying about disposing of them, because you know

SWT and events 347

the JVM will take care of them when garbage collection runs. However, when
you’re using SWT, you have to be more careful about how you use OS GUI
resources, because only a limited supply is available.

 When you create a resource-based object in SWT (for instance, Color, Cursor,
Font, or Image), you must dispose of it. If you don’t dispose of those you no longer
need, a resource leak will occur and you will end up in a situation where you will not
be able to create any more objects, nor will any other application running in the OS.

 The following code snippet allocates a Color resource and then disposes of it:

Color blue = new Color (display, 0, 0, 255);
blue.dispose()

D.3 SWT and events

The most common piece of code you will see in all SWT programs is the following:

while (!shell.isDisposed ())
{
 if (!display.readAndDispatch ())
 display.sleep ();
}

This is commonly referred to as the message pump or event dispatching loop. Its job
is to receive events from the OS (for instance, the user moving the mouse) while
the top-level application window is open, dispatch them to the appropriate SWT
widget, and then sleep until there is another event to process. You’re required to
have at least one of these in your program; otherwise, your application won’t
receive any events from the OS, which won’t make the user very happy.

 This approach is quite different than that used for AWT and Swing; there, this
mechanism is hidden from the developer. It isn’t hidden in SWT because if you
create SWT code as part of a plug-in for Eclipse, you don’t need a message
pump—you automatically use the one provided by the Workbench.

 The remainder of the event-handling mechanism is similar to that used for
AWT and Swing. A number of basic event types and their respective listeners and
adapters are declared in the org.eclipse.swt.events package. Consult the
online documentation for a complete list. The following code snippet demon-
strates how to create an event listener and how to add it to an object:

Button button = new Button(display, SWT.PUSH);
button.addSelectionListener(new SelectListener()
{
 public void widgetDefaultSelected(SelectionEvent e) {}
 public void widgetSelected(SelectedEvent e)

348 APPENDIX D
Introduction to SWT

 {
 System.out.println(“Button Pressed”);
 }
});

For those unfamiliar with handling events, don’t worry, it’s simple. As we’ve men-
tioned, an event correlates to an action such as a user moving a mouse or a win-
dow being maximized. For every type of event that can be received, there is an
interface called a listener. A listener is a class that knows how to handle the partic-
ular event and do something useful based on it. To create a listener class, you
have to create a class that implements the particular listener interface that
matches the event you want to handle.

 Looking at the previous snippet, we are interested in the SelectionEvent that
is sent when a button is clicked. If you look at the Javadoc for that event, you will
see that the appropriate listener is the SelectionListener. To add a listener to a
widget class, you call one of its addXXXListener() methods, as in the earlier code
that used addSelectionListener().

TIP Rather than spend time repeating what the Javadoc says, we encourage
you to examine the online help. There you will find a complete list of
the available event types, along with descriptions for them and the wid-
gets that handle/generate those events. To see the help, select Help→
Help Contents→Platform Plug-in Developers Guide→Programmers
Guide→Standard Widget Toolkit→Widgets→Events.

D.4 SWT and threads

When you’re building an SWT application using the SWT, an important factor to
consider is how all the widgets interact with threads. If you’re familiar with AWT
and Swing programs the following will seem familiar, but there are some impor-
tant differences to notice.

 A single important thread referred to as the UI thread is responsible for process-
ing events, dispatching them to appropriate widgets, and carrying out window
painting. Without it, your application would do nothing. You may be thinking
that we said something about this before, and we did.

 With AWT and Swing, the UI thread or event dispatching thread is hidden from
the developer; with SWT, the thread that creates the message pump becomes the
UI thread. This design decision makes it possible to plug SWT plug-ins into
Eclipse. In another departure from Sun’s approach, SWT was designed to be able

SWT and threads 349

to have more than one event dispatching thread. (This functionality is rarely
used, and we mention it only for completeness.)

 The main thread is the UI thread, so you should not carry out any complex or
time-consuming tasks (such as database access) or anything that might block the
thread. Instead, you should spin off another thread to carry out those operations.
Not doing so will seriously affect the responsiveness of your UI and inconvenience
the user, which is never a good thing to do. Tied in with this is the fact that the only
thread allowed to make calls to the SWT widgets without raising an SWTException
is the UI thread.

 You may wonder how you update the UI when your spun-off thread is com-
plete. To do this, you use two helper methods that are part of the Display class:
asyncExec() and syncExec(). (Note to Swing users: These methods are synonymous
with the invokeLater() and invokeAndWait() methods of the SwingToolkit class.
And yes, if you think Sun’s methods are more clearly named, we agree.) These
methods work as follows:

■ asyncExec(Runnable)—Should be used when you want to update the UI but
you don’t really care when it happens. Remember that using this method
means no guaranteed relationship exists between the processing in the
background thread and the UI updates.

■ syncExec(Runnable)—Should be used when your background thread needs
a UI update to occur before it can continue processing. Note that your back-
ground thread will be blocked until the UI update has occurred.

Both of the methods take classes that implement the Runnable interface. The fol-
lowing snippet shows how you would typically use those methods:

 Display.getDefault().asyncExec(new Runnable()
 {
 public void run()
 {
 button.setText(new Date().toString());
 }
 });

The asyncExec() method is part of the Display class, so you need to first retrieve
the present instance of the Display class; doing so saves having to pass a refer-
ence to the Display class throughout your program. To the asyncExec() method,
you pass a class that implements the Runnable interface. Typically you create an
anonymous class, as in the previous example, to do the update.

350 APPENDIX D
Introduction to SWT

D.5 Building and running SWT programs

You probably want to start coding, or at least look at some proper SWT code—
and we will in just a moment. However, before we do, let’s address how you build
and run the code.

 This book is about using Eclipse, so we will focus first on setting up Eclipse so you
can do SWT development. Then we’ll look at what you need to do to run code. After
that, we’ll explain the steps to run your SWT program from the command line.

 To set up Eclipse, follow these steps:

1 Select your project in the package view, right-click, and select Properties.
2 Select Java Build Path and then click on the Libraries tab.
3 Select Add External JARs. Note that you might wish to create a variable if

you are likely to use SWT a lot.
4 Locate the swt.jar file appropriate for your platform, as shown in fig-

ure D.2 (<eclipse-root> is the parent directory where Eclipse is located):
■ Linux GTK—<eclipse-root>/plugins/org.eclipse.swt.gtk_2.1.0/os/linux/x86
■ Linux Motif—<eclipse-root>/plugins/org.eclipse.swt.motif_2.1.0/os/linux/

x86
■ Solaris Motif—<eclipse-root>/plugins/org.eclipse.swt.motif_2.1.0/os/solaris/

sparc
■ AIX Motif—<eclipse-root>/plugins/org.eclipse.swt.motif_2.1.0/os/aix/ppc
■ HPUX Motif—<eclipse-root>/plugins/org.eclipse.swt.motif_2.1.0/os/hpux/

PA_RISC
■ Photon QNX—<eclipse-root>/plugins/org.eclipse.swt.photon_2.1.0/os/qnx/

x86
■ Mac OSX—<eclipse-root>/plugins/org.eclipse.swt.carbon_2.1.0/os/macosx/

ppc
5 Click OK.

NOTE For some platforms, such as GTK, more than one JAR is required to run
SWT (GTK uses swt.jar and swt-pi.jar files). In this case, you must add all
the required JARs to the classpath. To do so, repeat the previous steps
for each JAR file. All JAR files are located in the same directory/folder.

To run your code, you need to follow these steps:

Building and running SWT programs 351

1 In the Package Explorer view, select the class that contains the main you
wish to run.

2 Select Run→Run.
3 In the Run dialog, select Java Application and click New.
4 Select the Arguments tab and click the cursor in the VM Arguments

text box.
5 Enter -Djava.library.path=<path>, where <path> is one of the following,

based on your OS (see figure D.3):
■ Win32—<eclipse-root>\plugins\org.eclipse.swt.win32_2.1.0\os\win32\x86
■ Linux GTK—<eclipse-root>/plugins/org.eclipse.swt.gtk_2.1.0/os/linux/

x86
■ Linux Motif—<eclipse-root>/plugins/org.eclipse.swt.motif_2.1.0/os/

linux/x86

Figure D.2 Add swt.jar to your classpath through the Project Properties dialog. You can
use either the Add External JARs button or the Add Variable option to locate it.

352 APPENDIX D
Introduction to SWT

■ Solaris Motif—<eclipse-root>/plugins/org.eclipse.swt.motif_2.1.0/os/
solaris/sparc

■ AIX Motif—<eclipse-root>/plugins/org.eclipse.swt.motif_2.1.0/os/aix/ppc
■ HPUX Motif—<eclipse-root>/plugins/org.eclipse.swt.motif_2.1.0/os/

hpux/PA_RISC
■ Photon QNX—<eclipse-root>/plugins/org.eclipse.swt.photon_2.1.0/os/

qnx/x86
■ Mac OSX—<eclipse-root>/plugins/org.eclipse.swt.carbon_2.1.0/os/

macosx/ppc
6 Click Apply and then click Debug.

Figure D.3 To let your program find the native SWT DLL, you need to add it to your Java library path
through the Launch Configuration dialog.

Using SWT 353

Your application is now running. Remember to terminate the example; to do
this, you can click on the square in the console view.

 Running your code from the command line is similar:

1 Ensure that the appropriate JAR files for your platform are in the classpath.
2 Call java with the –Djava.library.path argument (as per the previous

steps) and the name of your program.

D.6 Using SWT

We’ve covered the concepts of what SWT is and how to set up Eclipse so you can
build and run examples. It’s now time to take a look at a simple SWT example.

 Rather than dump the code on you, we will lead you through the classes that
form this example. If you wish to follow the code using Eclipse, make sure
Eclipse is set up as described in section D.5. Then, create two Java classes (File→
New→Class): BasicFramework and MainApp. Be sure you create them with the
package set to org.eclipseguide.swt.

D.6.1 The BasicFramework class

Let’s first look at BasicFramework. The first part defines the package in which this
class is located and then imports the required classes for this example:

package org.eclipseguide.swt;

import org.eclipse.swt.SWT;
import org.eclipse.swt.events.*;
import org.eclipse.swt.widgets.*;

BasicFramework is declared Abstract to ensure that whoever subclasses this class
provides implementations for the dispose() and displayHelpAboutDialog()
methods. In this basic framework, these methods are used as a reminder that
resources should be disposed of and you need to provide your own About dialog.
The remainder of the code is holders for the widgets you will use shortly:

public abstract class BasicFramework
{

 protected Display display;
 protected Shell shell;
 protected Menu menuBar, fileSubMenu, helpSubMenu;
 protected MenuItem fileSubMenuHeader;
 protected MenuItem fileExit, helpSubMenuHeader;
 protected MenuItem helpAbout;

 public abstract void dispose();
 public abstract void displayHelpAboutDialog();

354 APPENDIX D
Introduction to SWT

The following inner class implements the SelectionLister, so it will deal with
Selection events. It will be attached to the Exit menu item (defined in a moment).
The basic principal is that it closes the window, which terminates the message pump,
and then it calls dispose() to ensure that the two actions are tied together:

 class FileExitListener implements SelectionListener
 {
 public void widgetSelected(SelectionEvent event)
 {
 shell.close();
 dispose();
 }

 public void widgetDefaultSelected(SelectionEvent event)
 {
 shell.close();
 dispose();
 }
 }

Similarly, the next inner class deals with selection events for the About button on
the Help menu:

 class HelpAboutListener implements SelectionListener
 {
 public void widgetSelected(SelectionEvent event)
 {
 displayHelpAboutDialog();
 }

 public void widgetDefaultSelected(SelectionEvent event)
 {
 displayHelpAboutDialog();
 }
 }

NOTE In the two listener classes, the two methods widgetSelected and wid-
getDefaultSelected cover different event types. widgetSelected
processes events from widgets the user has selected with a pointer—for
instance, clicking on a button. widgetDefaultSelected processes events
that are generated when the user presses the Space or Enter key and the
button has focus.

Next you begin creating the hierarchy of the SWT architecture:

 public BasicFramework(String windowTitle)
 {
 display = new Display();

Using SWT 355

 shell = new Shell(display);
 shell.setText(windowTitle);

Remember that the Display widget is the object through which your application
will talk to the OS. Shell is then created and passed the display as its parent. This
shell acts as your top-level window, upon which everything else goes. Finally,
Shell has a number of helper methods: setMinimized(), setMaximized(), and so
on. Here you set the title of the window.

 Building a fully featured menu bar in SWT is a complicated process. Rather
than simply having some simple classes like MenuBar, Menu, MenuItem, and Sub-
Menu, the designers have gone for two classes that carry out multiple roles, depend-
ing on what style they are passed:

 menuBar = new Menu(shell, SWT.BAR);
 fileSubMenuHeader = new MenuItem(menuBar, SWT.CASCADE);
 fileSubMenuHeader.setText("&File");

The first step is to create the menu bar upon which all the other menus hang. You
do this by passing in the style argument SWT.BAR. You then create a hang point,
which is basically a placeholder for where the menu will be attached. Finally, you
set the text that appears on the menu bar for the placeholder. The & symbol beside
the letter F indicates that F should be treated as a mnemonic (a keyboard shortcut
for accessing the menu). To use it, you press the Alt key to activate the menu and
then press the F key to select that menu. You can then use the cursor keys to explore
the menu.

 The next part of building the menu requires you to create the menu that
appears when you click on the File text. You create it to be a drop-down menu by
specifying the DROP_DOWN style. (The other possible style option is POP_UP, which
creates a pop-up menu that is useful for right-click selections and so forth.) Then,
you attach the menu to the placeholder:

 fileSubMenu = new Menu(shell, SWT.DROP_DOWN);
 fileSubMenuHeader.setMenu(fileSubMenu);

In the last stage of building a menu, you create items to go on the menu. As before,
you need to specify the style of the menu items, but you have more choices—in
addition to creating a pushbutton menu item, you can also create a check-boxed
item, a radio item, or a separator (used to create sections in your menus):

 fileExit = new MenuItem(fileSubMenu, SWT.PUSH);
 fileExit.setText("E&xit");

These are written the same way as the File menu:

356 APPENDIX D
Introduction to SWT

 helpSubMenuHeader = new MenuItem(menuBar, SWT.CASCADE);
 helpSubMenuHeader.setText("&Help");

 helpSubMenu = new Menu(shell, SWT.DROP_DOWN);
 helpSubMenuHeader.setMenu(helpSubMenu);

 helpAbout = new MenuItem(helpSubMenu, SWT.PUSH);
 helpAbout.setText("&About");

Next you attach the listener classes to the menu items. From this point on, when
you click the File menu’s Exit option or the Help menu’s About option, those
events will be dealt with:

 fileExit.addSelectionListener(new FileExitListener());
 helpAbout.addSelectionListener(new HelpAboutListener());

The following line attaches the menu bar to the top-level shell:

 shell.setMenuBar(menuBar);
 }

The following is the last section of code for the BasicFramework class. It is an
important section; not only does it make the top-level window (shell) appear on
the screen, it also creates the message pump, which is the heart of this example.
When you’re developing a standalone application, remember that without this
part, your program will do very little:

 public void mainLoop(int hSize, int vSize)
 {
 shell.setSize(hSize, vSize);
 shell.setVisible(true);
 shell.open();

 while (!shell.isDisposed())
 {
 if (!display.readAndDispatch())
 display.sleep();
 }
 }
}

D.6.2 The MainApp class

Now let’s look at the MainApp class, which extends the BasicFramework and does
something useful with it. As before, you declare that this class is a member of the
org.eclipseguide.swt package and then import all the classes used in this example:

package org.eclipseguide.swt;

import java.util.*;

Using SWT 357

import org.eclipse.swt.SWT;
import org.eclipse.swt.events.*;
import org.eclipse.swt.layout.FillLayout;
import org.eclipse.swt.widgets.*;

Rather than using a thread to set up a timer, you use the java.util.Timer class.
If you haven’t used Java 1.3 and beyond before (1.3 is the minimum Eclipse
needs to run), you may not have come across this class. It is a simple convenience
class that provides a dedicated timer thread:

public class MainApp extends BasicFramework
{
 Timer timer;
 Button button;

The button is placed in the main window of the example and displays the time.
When clicked, it prints the time to the console.

 The following inner class extends the abstract TimerTask class. Basically, a
timer task is a Runnable that is passed to the Timer and executed at a desired
interval. Inside the run method, you add an anonymous Runnable to the event
queue, which updates the button text with the current time. You don’t care when
the UI thread processes this, so you add it using the asyncExec method:

 private class ClockUpdateTask extends TimerTask
 {
 public void run()
 {
 Display.getDefault().asyncExec(new Runnable()
 {
 public void run()
 {
 button.setText(new Date().toString());
 }
 });
 }
 }

This is the constructor of the MainApp class. Here you call the constructor of your
parent class BasicFramework, passing the title text:

 public MainApp()
 {
 super("SWT Example Framework");

Every window can have a layout manager that controls the placement and sizes
of the widgets:

 shell.setLayout(new FillLayout(SWT.VERTICAL));

358 APPENDIX D
Introduction to SWT

Five layouts are already defined: FillLayout, StackLayout, GridLayout, FormLay-
out, and RowLayout. There is also a CustomLayout you can use to better control
the widget placements.

TIP To learn more about layouts, we recommend that you read the article
“Understanding Layouts in SWT” (available from the Articles section of
the Eclipse website: http://www.eclipse.org/articles/).

The next part of the code creates and adds a pushbutton to the shell window.
You’re using the fill layout, so there is no point in specifying the size of the but-
ton. It will simply expand to fill all available space:

 button = new Button(shell, SWT.PUSH);

The following code shows an alternate way of adding a listener to a widget by
connecting an anonymous class to it. It is preferable to use anonymous classes for
short classes. Otherwise, it is recommended that you use a proper class (be it an
inner class, or package friendly):

 button.addSelectionListener(new SelectionListener()
 {

 public void widgetSelected(SelectionEvent event)
 {
 System.out.println(
 "Button clicked - time is: " + button.getText());
 }

 public void widgetDefaultSelected(SelectionEvent event)
 {
 System.out.println(
 "Button pressed with default key - time is: "
 + button.getText());
 }
 });

Next you create the timer and schedule that your ClockUpdate task will start after a
0 millisecond delay; it will be called every 1000 milliseconds (1 second) thereafter:

 timer = new Timer();
 timer.scheduleAtFixedRate(new ClockUpdateTask(), 0, 1000);

You don’t have to tell the timer to start—as soon as the app is created, it is running.
 The following code calls the mainLoop of the parent class BasicFramework,

where you enter the event loop and don’t return until the shell is closed. When it
is, you exit the JVM in which the app is running:

Using SWT 359

 this.mainLoop(300, 200);

 System.exit(0);
 }

This is called to create the MainApp class and start the whole ball running:

 public static void main(String[] args)
 {
 new MainApp();
 }

Now you implement the abstract methods of the parent class; however, the code
doesn’t do anything useful with them. It is designed so you can put all resources
you declare into the dispose() method, so you can easily locate everything that
needs to be disposed of:

 public void dispose()
 {
 System.out.println("Disposing of Resources");
 }

 public void displayHelpAboutDialog()
 {
 System.out.println("Display Help About Dialog");
 }
}

We also envisioned that you would put whatever logic you need for creating your
About dialog in the displayHelpAboutDialog() method.

D.6.3 Trying the example

With the code complete, you can run the example to give it a test drive. If you’re
simply following the text, figure D.4 shows what the example looks like.

Figure D.4
The SWT Example demonstrates
menus, buttons, and drawing text.
Click the button to write a line to
the console.

361

EIntroduction to JFace

362 APPENDIX E
Introduction to JFace

In this appendix, we will examine a higher-level GUI toolkit created by IBM, called
JFace. We will discuss what it is, what it’s for, and how it interacts with the Standard
Widget Toolkit (SWT).

E.1 Architecture

JFace is a platform-independent toolkit built on SWT. It provides convenience
classes for many typical application features and simplifies a number of common
UI tasks. It enhances and works with SWT without ever hiding it from the developer.

 Figure E.1 shows the relationship between SWT, JFace, and Eclipse. As you can
see, JFace is completely dependent on SWT, but SWT is not dependent on anything.
Furthermore, the Eclipse Workbench is built on both JFace and SWT and uses them
both as needed.

 Some of the common tasks JFace addresses include the following:
■ It provides viewer classes that handle the tedious tasks of populating, sort-

ing, filtering, and updating widgets.
■ It provides actions to allow users to define their own behaviors and to assign

them to specific components, such as menu items, toolbar items, buttons,
and so on. Actions are designed to be shared among different widgets. Rather
than duplicate code, the same action can be used for a menu item and an
entry on a toolbar.

■ It provides registries that hold images and fonts. These registries are intended
to provide a mechanism to more easily look after limited OS resources.
Images and fonts that are used often should be put in these registries.

■ It defines standard dialogs and wizards and defines a framework that can be
used to build complex interactions with the user. Some of the dialog types
that have been implemented include MessageDialog, InputDialog, and
PreferenceDialog.

JFace’s primary goal is to free you to focus on the implementation of your spe-
cific application without having to solve problems that are common to most
GUI applications.

Figure E.1
JFace integration with other
Eclipse technologies

Building a JFace application 363

Before you can compile and run the example in this appendix, you need to add
a few more JAR files to your classpath or Eclipse project library:

■ <eclipse-root>\plugins\org.eclipse.jface_2.1.0\jface.jar
■ <eclipse-root>\plugins\org.eclipse.core.runtime_2.1.0\runtime.jar
■ <eclipse-root>\plugins\org.eclipse.ui.workbench_2.1.0\workbench.jar
■ <eclipse-root>\plugins\org.eclipse.core.boot_2.1.0\boot.jar

Remember that you need to have the appropriate SWT library in your Java
library path, as shown in appendix D.

E.2 Building a JFace application

Building applications using JFace is different from building pure SWT applica-
tions. To begin with, you don’t have to worry about implementing the message
pump, and you don’t work directly with the Display or Shell class. Instead, you
derive your main class from org.eclipse.jface.window.ApplicationWindow. This
class has full support built into it for menu bars, toolbars, and a status line.

 Through the course of this example, we will show you how to build a simple
application that has a menu bar, a toolbar, and a status line. Before we walk
through the code, we’d like to show you what you will be creating. Figure E.2 shows
the final example: E.2a shows the main window with a menu, a toolbar with a
button on it, and a status line. E.2b shows the same action used for the button,
but this time on the menu.

NOTE We highly recommend examining the following articles, which discuss
building a JFace-based standalone application (a limited clone of the
Windows Explorer window) from the ground up:

Figure E.2 Using JFace, it’s easy to create buttons and menus that perform the same
action. (a) shows the button and (b) shows the menu. Notice that the icon in the menu
is the same as the icon in the button.

(a) (b)

364 APPENDIX E
Introduction to JFace

■ http://www-106.ibm.com/developerworks/opensource/library/os-ecgui1/
■ http://www-106.ibm.com/developerworks/opensource/library/os-ecgui2/
■ http://www-106.ibm.com/developerworks/opensource/library/os-ecgui3/

E.2.1 JFaceExample class

First let’s walk through the main class that builds the screen (JFaceExample). The
code begins by importing the packages required for this example:

package org.eclipseguide.jface;

import org.eclipse.jface.action.*;
import org.eclipse.jface.window.ApplicationWindow;
import org.eclipse.swt.SWT;
import org.eclipse.swt.widgets.*;

The ExitAction class extends Action and provides a common class that can be
shared between certain widgets:

public class JFaceExample extends ApplicationWindow
{
 private ExitAction exitAction;

A null parent is passed to the ApplicationWindow class to indicate that it should
be created as a top-level window. If you wanted to create it as a child window, you
would pass an existing Shell instance instead:

 public JFaceExample()
 {
 super(null);

You create an instance of the ExitAction class, passing an instance of the Appli-
cationWindow class as an argument. The argument is later used by the ExitAction
class to close the main window:

 exitAction = new ExitAction(this);

The following methods are part of the ApplicationWindow class:
 this.addMenuBar();
 this.addStatusLine();
 this.addToolBar(SWT.FLAT | SWT.WRAP);
 }

When they are called, they in turn call the methods createMenuManager(), create-
StatusLineManager(), and createToolBarManager(). If you wish to have a menu,
status line, or a toolbar, then you need to override those methods, ensuring that
they return the correct type. We will look at the implementations of those meth-
ods shortly.

Building a JFace application 365

 The createContents() method is one you should override when building
your application, in order to create and place your widgets. For this example,
you simply set the application window’s title and status line:

 protected Control createContents(Composite parent)
 {
 getShell().setText("JFace File Explorer");
 setStatus("JFace Example v1.0");
 return parent;
 }

Note that the application window calls this method after all other widgets have
been created but before the window has been displayed on the screen.

 The size of the application window is set by the initializeBounds() method:

 protected void initializeBounds()
 {
 getShell().setSize(300, 200);
 }

Building menus in SWT was a painful process, but thankfully JFace makes the pro-
cess somewhat easier. To create a set of menus, you must first create a menubar
that is an instance of MenuManager. Then, for each submenu, you create another
instance of the MenuManager class and add it to the menu bar. The final step is to
add a class that extends the Action class:

 protected MenuManager createMenuManager()
 {
 MenuManager menuBar = new MenuManager("");
 MenuManager fileMenu = new MenuManager("&File");
 MenuManager helpMenu = new MenuManager("&Help");
 menuBar.add(fileMenu);
 menuBar.add(helpMenu);
 fileMenu.add(exitAction);
 return menuBar;
 }

The StatusLineManager class provides methods for setting the text of the status
line, for controlling a progress bar displayed on the status line, and for display-
ing error text and images:

 protected StatusLineManager createStatusLineManager()
 {
 StatusLineManager statusLineManager = new StatusLineManager();
 statusLineManager.setMessage("Hello, world!");
 return statusLineManager;
 }

366 APPENDIX E
Introduction to JFace

Creating a toolbar is simply a matter of creating an instance of ToolBarManager,
passing in a style, and then adding any actions:

 protected ToolBarManager createToolBarManager(int style)
 {
 ToolBarManager toolBarManager = new ToolBarManager(style);
 toolBarManager.add(exitAction);
 return toolBarManager;
 }

Note that the styles allowed are the same as those for the SWT Toolbar class—
those that affect the orientation of the toolbar (SWT.VERTICAL and SWT.HORIZON-
TAL) and those that affect the look of the toolbar (SWT.FLAT and SWT.WRAP).

 The next part is basically the same as when you’re working with SWT. You cre-
ate the main window, set it to keep running until the user closes it, open the win-
dow, and then finally dispose of the Display when open() returns:

 public static void main(String[] args)
 {
 JFaceExample fe = new JFaceExample();
 fe.setBlockOnOpen(true);
 fe.open();
 Display.getCurrent().dispose();
 }
}

E.2.2 ExitAction class

That wraps up the JFaceExample class. Now let’s examine the ExitAction class.
Again you import the required packages:

package org.eclipseguide.jface;

import java.net.*;
import org.eclipse.jface.action.Action;
import org.eclipse.jface.resource.ImageDescriptor;
import org.eclipse.jface.window.ApplicationWindow;

As we mentioned at the beginning of this appendix, an action lets you define
what behavior should occur when it is activated and to share that behavior with
other widgets. In this case, you create an action that begins the process of stop-
ping the application by closing the main window:

public class ExitAction extends Action
{

Being able to share this behavior between different widgets is useful because it
lets you create a single area of code rather than causing problems through dupli-

Building a JFace application 367

cation. With some careful effort, you will be able to create common actions that
you can share among your programs.

 The text is passed as appropriate to the widget connected to this Action:

 ApplicationWindow window;

 public ExitAction(ApplicationWindow w)
 {
 window = w;
 setText("E&xit@Ctrl+W");
 setToolTipText("Exit the application");

As mentioned in appendix D, the & symbol before a letter indicates that the letter
should be treated as a mnemonic. (If a menu is open and has keyboard focus, you
can press the appropriate key to execute the action.) The @ symbol defines a key-
board accelerator; in this case, pressing Ctrl-W directly calls the Action.

 The following code sets the image associated with this Action, which appears
to be placed on a toolbar or menu. The image is loaded from a directory called
icons, which must be located in the same place as the example’s class files.

 try
 {
 setImageDescriptor(
 ImageDescriptor.createFromURL(
 new URL("file:icons/sample.gif")));
 }
 catch (MalformedURLException e)
 {
 e.printStackTrace();
 }
 }

Action’s run method needs to be overridden to provide the behavior you desire,
in this case to close the window and effectively cause the program to end:

 public void run()
 {
 window.close();
 }
}

369

index

Symbols

(number), 129
${ and }, 126
% (percent sign), 72
(\) backward slashes, 119
(/) forward slashes, 119
* (asterisk), 129
** (double asterisk), 129
*.jar file, 221
*lib file, 221
? (question mark), 129
~ (tilde), 129

Numerics

1.5.2 ant.jar, 117

A

About button, 354
About Eclipse Platform

option, 322
about.html file, 221
ABSOLUTE format, 73
absolute paths118, 127
abstract TimerTask class, 357
Abstract Window Toolkit

(AWT), 344
AbstractUIPlugin, 233, 236
accelerator configurations, 338
Action class, 365
ACTION parameter, 214
action sets, 238, 339
actions, 237, 238, 239, 240, 362

adding to editor menus and
toolbars, 339

defining, 286, 287
JSP, 180

actionSet extension, 238
Add Bookmark option, 309
Add Constructor from

Superclass option, 311
Add External JARs option, 350
Add Folder option, 106
Add Import option, 310
Add Jars option, 243
Add Java Exception Breakpoint

option, 321
Add Java Projects to Tomcat

Classpath section, 184
Add Javadoc Comment

option, 311
Add Task option, 309
Add to Version Control

option, 190
add() method, 84
Add/Remove Breakpoint

option, 321
Add/Remove Method

Breakpoint option, 321
Add/Remove Watchpoint

option, 321
addEvent() method, 300
additions section, 238
Additions separator, 286
AddLoggerAction class, 253
addXXXListener() method, 348
Advanced option, 188
affectsTextPresentation()

method, 269

agile methodology, 40
agile programming, 145
AllTests class, 89
ALT attribute, 194
alternate packaging, 340
Always Save All Modified

Resources Automatically
Prior to Refactoring
option, 155

anonymous classes, 358
Ant (build tool), 112, 116, 126,

128, 131, 138, 141
associating data types with

classes in plug-ins, 335
associating tasks with classes

in plug-ins, 335
benefits of, 112, 140
extension points used

with, 335
file sets and path

structures, 129, 130
Java Development Kit (JDK)

required, 112
plug-in for, 221
projects, 118, 119
properties, 126
reducing redundant code, 131
running outside

Eclipse, 116, 117
sample build, 131, 136

debugging the build, 138
overview, 131
performing a build, 136
simple example, 115–118

targets, 119
tasks, 119–127

370 INDEX

Ant library, 242
ant-project help command, 138
Apache Organization’s Jakarta

project, 178
Apache Software

Foundation, 116
append attribute, 121, 123
appenders, 71, 74, 75
-application option, 336
ApplicationWindow

class, 363, 364
Apply Patch option, 169
architecture of Eclipse, 8, 9, 10
Arguments tab, 351
assert methods, 50
assertEquals() method, 50
assertFalse() method, 50
assertNotNull() method, 50
assertNotSame() method, 50
assertNull() method, 50
assertSame() method, 50
assertTrue() method, 50, 88
astronomy classes, 85, 86, 87, 88
asyncExec() method, 284,

349, 357
attributes

of value objects, 85–86, 91
XML, 114, 115

author attribute, 125
auto activation, 271
automated refactoring, 96

B

Back option, 319
backing up CVS (Concurrent

Versions System), 332
backslashes (\), 119
base directory, 118
basedir attribute, 118, 122
basedir property, 127
Beck, Kent, 43
bin directory, 108, 112, 117
bin.includes property, 245
binary files, 338
binary imports, 225
Binary Plug-in Projects

decoration, 224
binary plug-ins, 225
Board of Stewards, 5

braces, 266
branches, 171

creating and using, 172–173
difference from versions, 152

branching, 145
breakpoint properties, 64, 66
breakpoints, custom, 336
browsers, HTML, 337
BSD UNIX, 328
BufferedReader class, 66
BufferedWriter class, 58, 66
build directory structure

creating, 105, 107, 108
separating source and build

directories, 105, 107
build order, 198
Build Order option, 198
build paths, 198, 337
build process

creating build directory
structure, 105, 107, 108

need for, 104
build tools, 110. See also Ant

(build tool)
build.properties file, 133, 244
build.xml file, 115, 116, 118,

132, 150, 158
BuildAll target, 136, 158
builds, 14
buttons

adding to toolbars, 286
defining own behaviors

for, 362
for shortcuts, 18

C

C Development Toolkit (CDT), 8
C source files, 109
Cactus tool, 193
canvases, 346
category property, 302
CDT (C Development

Toolkit), 8
CelestialBody equals()

method, 87, 88
CelestialBody.java superclass, 85
Chainsaw program, 279
Change ASCII/Binary Property

option, 190

Change Method Signature
option, 155, 312

Check Out as Project
option, 153

class attribute, 233
class files, 107, 227
Class Name, 229
class property, 238
Class Selection dialog, 258
class variables, 43, 44
classes

anonymous, 358
compiling in Java, 111
containing collections, 112
renaming, 96, 97, 98
to look up classes and source

files for classpath
variables, 337

viewer, 362
ClassMappingFailure

exception, 95
classname attribute, 123
ClassNotFound exceptions, 241
classpath, specifying, 115
classpath attribute, 115, 123, 125
classpath element, 115, 128
.classpath file, 150
CLASSPATH environment

variable, 112
classpath variables, 36, 133,

153, 337
CLEAN command, 110
CLEAN target, 110
CLEANALL command, 110
clear() method, 300
ClockUpdate task, 358
Close All option, 308
Close All Perspectives

option, 322
Close option, 308
Close Perspective option, 322
Close Project option, 320
close() method, 241
closing tags, 113
cmpStrings() method, 87, 88
code assistant, 24
code completion, 271
code generation

templates, 34, 35
code-completion feature, of Ant

editor, 116

INDEX 371

code-generation dialog, 229
collaboration. See source

control, 144
collections, classes

containing, 112
color field editor, 304
color manager classes, 269
colors

adding, 261, 264, 267
of console output, 336

ColumnLayoutData class, 283
ColumnPixelData subclass, 283
columns

creating, 291, 292
defining, 282, 283, 290
remembering

widths of, 294, 296
ColumnWeightData

subclass, 283
comma separated values

(CSV), 54
Command not found error, 325
command prompt, 104,

138, 140
commands, defining, 339
Comment option, 310
comment partitions, 277
comments

for CVS repository, 151
HTML, 114
in changed files, 160
Javadoc, 97, 108, 135
partitions for, 264

CommentScanner
class, 253, 264

Common Public License (CPL), 7
Commons Logging, 185
Company class, 112
compare/merge viewer

factory, 335
compilation, 111
compilation unit, 21
compilers, 233
Compilers option, 224
CompletionProposal class, 273
composites, 346. See also widgets
computeCompletionProposals()

method, 273
Concurrent Versions System

(CVS). See CVS (Concur-
rent Versions System)

Conf folder, 189
ConfigurationModel class, 252,

273, 274
conflicts in updated files, 160
console, color of output, 336
Console view, 138, 149
ConsoleAppender, 71

constructors, 236, 285
container, servlet, 178, 179
content assist, 271, 274
Content Assist function, 58
Content Assist option, 310
content provider, 285, 298
content type, 264
ContentAssistAction class, 279
ContentAssistant class, 277
context-sensitive (F1) help, 337
Controller component, 178
controls, 345, 346. See also

widgets
conversion of data, 199
conversion specifiers, 72, 73
Convert Anonymous Class to

Nested option, 312
Convert Line Delimiters

option, 312
Convert Local Variable to Field

option, 317
Convert Nested Type to Top

Level option, 314
Copy command, 278
Copy option, 309
Copy Plug-in Contents into the

Workspace Location
option, 225

CPL (Common Public License), 7
Create a Blank Plug-in Project

option, 228, 242
Create a Java Project

option, 226, 242
Create Class FieldMapEntry

option, 92
Create Patch option, 168
Create Selected Folders Only

option, 81
createActions() method, 287
createChild() class, 295
createMenuManager()

method, 364
createObjectManager() factory

method, 90

createObjectManager()
method, 100

createObjectManager(Class
type) method, 84

createPartControl()
method, 285, 289, 290

createStatusLineManager()
method, 364

createToolBarManager()
method, 364

creating
Java classes, 22, 24
Java projects, 20, 21
shortcuts, 15
CSV (comma separated

values), 54
Ctrl-Space key sequence, 16, 198,

271, 277
Ctrl-W key sequence, 367
Ctrl-Z key sequence, 165
custom breakpoints, 336
custom markers, 335
Custom Plug-in Wizard, 228
custom rules, 267
Customize Perspective

option, 322
CustomLayout, 358
Cut option, 309
CVS (Concurrent Versions

System), 144–167, 174
and SSH, 324
backing up, 332
checking in to, 158, 160
creating and applying

patches, 167, 169
creating CVS repository, 325
installing, 324, 325, 327, 328,

329, 330, 332
CVSNT on Windows, 329
Cygwin and SSH installa-

tion on Windows, 330
on Mac OS X, 328
on UNIX and Linux, 324,

325, 327
overview, 324
troubleshooting problems

with, 332
placing Tomcat project under

control of, 190
sharing project with, 146,

147, 149, 152

372 INDEX

CVS (continued)
adding and committing

files, 149
checking project out of

CVS, 152
creating repository

location, 146
synchronization modes, 165
synchronizing with

repository, 162
versions and branches, 171,

172, 173
CVS console view, 149
CVS diff utility, 169
CVS label decorators, 149
CVS Repository Exploring

option, 147
CVS server, 324
CVS Synchronize view, 148
.cvsignore file, 151
CVSNT, 324
CVSROOT directory, 152
cygrunsrv -S sshd command, 331
CYGRUNSRV package, 331
Cygwin, 324, 330

D

-D option, 133
DailyRollingFileAppender, 71
damagers, 277
-data option, 226
data validation and

conversion, 199
DatabaseObjectManager

class, 96, 168
databases, providing persistence

with, 101
DATE format, 73
date format specifiers, 73
Debug As option, 320
debug attribute, 123
Debug History option, 320
Debug Last Launched

option, 320
Debug menu, 336
debug models, 336
Debug option, 320
Debug perspective, 18
Debug view, 27, 28
debug() method, 70

debugger
helping locate source

code, 336
status codes, 336

debugging, 17, 62, 64
as collaborative effort, 145
finding and fixing bugs, 66,

67, 68
in Ant (build tool), 138
Java program, 27, 28, 29, 30
JSPs, 207
plug-ins, 232
servlets, 204, 208, 209
setting breakpoint properties

in, 64, 66
with aid of branching, 145

DebugPlugin.log() method, 274
Declarations option, 319
default key bindings, 339
Default Plug-In

Structure, 228, 253
Default Text File Type

option, 331
DefaultDamagerRepairer

class, 277
defaultexcludes attribute, 129
DefaultScanner class, 253, 265
defining properties, 126
delegates, 241
delete action, 287
Delete option, 309
delete() method, 60, 61, 67,

154, 155
delete(int key) method, 84
deleting

directories, 121, 136
files, 121
reference to src/ folder, 243

dependencies
defined, 109
evaluation of, 111
Dependencies page, 230, 256

depends attribute, 119
Deployable Plug-ins and

Fragments, 246
deploying plug-ins, 246
deprecated extension

points, 334
description attribute, 119
Deselect Working Set

option, 186

desktop, dragging shortcuts
to, 15

destdir attribute, 123, 125
destfile attribute, 122
destPage variable, 215
Details button, 150
dialogs, defining, 362
diff utility, 169
dir attribute, 121, 126, 129
Direction setting, 156
directories

containing plug-ins, 220
deleting, 121, 136
for distributable files,

creating, 108
importing external

directories, 80, 81, 82, 83
web application directory

structure, 191, 192
directory attribute, 121
directory structure, build, 105
Display class, 345, 346, 349
Display option, 321
display resources, predefined

filters for, 340
Display view, 30
Display.asyncExec()

method, 284
displayHelpAboutDialog()

method, 353, 359
dispose() method, 241, 271,

289, 353, 354, 359
disposing of resources, 347
distributable files, creating

directory for, 108
-Djava.library.path

argument, 353
document provider classes, 339
document providers, 275
documentation, 108

benefits of source control
for, 145

for Ant (build tool), 120
help, 10

doGet() method, 181, 198, 199
domain names, 22
do-nothing constructor, 84
doPost() method, 181, 198, 200,

204, 209
Double.parseDouble()

method, 199

INDEX 373

downloading Eclipse, 14, 15
drag-and-drop, importing

external projects with, 83
drop() method, 60, 154, 155
DROP_DOWN style, 355
drop-down menus, 355
dropObjectTable() method, 84, 88
DSTAMP property, 126, 132
DynamicMBean interface, 238,

239, 266, 277

E

Eclipse
architecture of, 8, 9, 10
code-generation feature, 24, 25
downloading, 14, 15
future of, 11
installing, 15
origin of, 4, 5, 6
overview, 15–20
preferences, 32, 33, 35, 37
versions of, 14, 15
what it is, 7
Workbench, 16, 18, 19, 20

Eclipse Community page, 215
Eclipse organization, 5
Eclipse Platform, 7, 8
Eclipse Platform Technical

Overview, 344
Eclipse Software Development

Kit (SDK), 11
Edit menu options, 309
editor menus, adding

actions, 339
editor preference page, 303
EditorPreferencePage class, 253
editors, 16–18, 254–278

adding an icon, 259, 260
adding color, 261, 264, 267
adding to Workbench, 339
content assist, 271, 274
defining editor

extension, 255, 256
difference from views, 254
preparing editor class, 255
token manager, 269

element factories, 339
elements, XML, 114, 115
enableAutoActivation()

method, 274

Encoding option, 310
environment attribute, 128
environment variables, 128,

133, 153
equals() method, 86, 87
Equinox project, 222
error handlers, 336
error handling, 95
error() method, 70
evaluate() method, 267
event dispatching loop, 347
event listeners, 347
events, and SWT (Standard

Widget Toolkit), 347
.exe file, 109
exception handling, 95
excludes attribute, 122, 123,

129, 130
executable file, 15
Execute option, 321
execution order, 110
Exit menu item, 354
ExitAction class, 364, 366
Expand Selection To

option, 309
Export dialog, 339
Export option, 308
Export the Entire Library

option, 243
Export Wizard, 246
exporting preferences, 37
Expression view, 30
expressions, 29, 30, 180
.exsd extension, 255
extending persistence

component, 83–95
creating factory method, 84
creating test suite, 89
creating unit test class, 84
implementing ObjectManager

class, 90–95
Star test case, 88–89

extensibility of Eclipse, 12
extensible architecture, 220
Extensible Markup

Language, 113
Extension page, of Plug-in

Manifest Editor, 334
extension points

discussion of, 220
for plug-ins, 334, 340, 341

deprecated, obsolete, and
internal, 334

id attribute, 334, 340, 341
Extension Points page, 231
Extension Templates

Wizard, 255
Extension Wizard, 260
Extensions page, 231
External Plug-ins and Fragments

option, 225
external projects,

importing, 80–83
External Tools option, 321
Externalize Strings option, 311
Externalize Strings Wizard, 236
Extract Constant option, 317
Extract Interface option, 315
Extract Local Variable

option, 317
Extract Method option, 315–317
extracting interfaces, 99–101
eXtreme Programming (XP), 40
extssh option, 147

F

F1 (context sensitive help), 337
factory method, 84
failonerror attribute, 120–125
Fast View, 19
fatal() method, 70
Feature Project, 223
Field methods, 95
FieldEditorPreferencePage

class, 301–304
File Associations dialog box, 116
file attribute, 120, 121, 127
File menu options, 308
File option, 319
File System box, 189
File System option, 81, 242, 244
FileAppender, 71
filename parameter, 155
filenames, setting, 127
FileObjectManager class, 96,

101, 154, 157, 201
FilePersistenceServices class, 41,

42, 57, 83, 84, 93, 154,
160, 202

FilePersistenceServices.vec-
tor2String() method, 203

374 INDEX

FilePersistenceServicesTest
class, 46, 156, 157

FilePersistenceServicesTest test
case, 89

files, adding and committing to
CVS, 149

defining as text or binary, 338
deleting, 121
distributable, 108
history of changes to, 144
importing external files, 80,

81, 82, 83
locking, 145, 174
outdated, 105
specifying for Ant, 129, 130
updated, resolving conflicts

in, 160
FileSave All option, 82
Filesystem Realtime

Protection, 329
filesystems, 15, 16
fillContextMenu() method, 286
FillLayout layout, 358
fillLocalPullDown() method, 286
fillLocalToolBar() method, 286
fillXXX() methods, 286
filtering widgets, 362
finalize() method, 298
Find Next option, 309
Find Previous option, 309
Find Strings to Externalize

option, 312
Find/Replace option, 156,

157, 309
floppy disk icon, 18
flow of control, 110
Flyweight pattern, 261
focus events, 293
folders, 15, 16
followsymlinks attribute, 129
fonts, 339, 362
fork attribute, 123
Format option, 310
format styles, 33
FormatRule class, 253, 267
FormLayout layout, 358
Forward option, 319
forward slashes (/), 119
Fragment Project, 223
From Directory text box, 81
future of Eclipse, 11

G

Gamma, Erich, 6, 43
garbage collection, 241
Generate Delegate Methods

option, 311
Generate Getter and Setter

option, 86, 205, 311
Generate Javadoc option, 320
Generic Wizards option, 255
GET requests, 193
get() method, 84, 91, 93, 273
get(int key) method, 83
getAttribute() method, 208
getBundle() method, 236
getCollection() method, 210
getColumnText() method, 298
getCompletions() method, 274
getElements() method, 300
getFields() method, 91
getImage(Object) method, 298
getNextKey() method, 201
getRoot() method, 236
getSelection() method, 288
getShell() method, 241
Getter and Setter dialog box, 86
getter methods, 86
getViewer() method, 284
getWorkbench() method, 241
getXXX() methods, 85, 86, 205, 275
global install handlers, 340
Gnu make (build tool), 109
Gnu Public License (GPL), 329
Go Into option, 318
Go to Last Edit Location

option, 319
Go to Line option, 319
Go to Next Problem option, 318
Go To option, 318
Go to Previous Problem

option, 318
goto action, 288
GPL (Gnu Public License), 329
GridLayout layout, 358
grouping actions, 336
groups, in menus, 238
GTK platform, 350
GUI builder, 11

H

handleEvent() method, 284
handlePreferenceStore-

Changed() method, 269
handlers, 339, 340
hang point, 355
HEAD entry, 152
HELLO attribute, 163, 164
Hello project, 111, 116
Hello World Wizard, 228
HelloPlugin class, 233
HelloPlugin.getResourceString

method, 236
HelloPlugin.java file, 233
HelloPluginResources.proper-

ties, 236
help, online, 319, 348

context-sensitive (F1), 337
Help Contents option, 3, 22
Help menu, 322, 354

indexing files, 337
overview, 10
searching, 337

Hide Editors option, 321
hiding plug-ins from Package

Explorer menu, 226
history of Eclipse, 4, 5, 6
history, revision, 145
HOME environmental

variable, 332
Home.jsp, 195
hookEvents() method, 293
hot-swapping, 232
hovering behavior in Java

editors, 338
HTML (Hypertext Markup

Language), 113, 178
HTML browsers, 337
HttpJspBase subclass, 207
HttpServlet class, 181, 207
Hypertext Markup Language

(HTML), 113, 178

I

IAction interface, 241
IActionDelegate, 241
IBM, 5, 7, 12
IBM’s Websphere Studio Appli-

cation Developer, 11

INDEX 375

ICharacterScanner class, 267, 268
ICharacterScanner.read()

method, 268
icons, 18, 259, 260, 340
icons file, 221
IContentAssistProcessor, 271, 274
ID plug-ins, 238
id attribute, 334, 340, 341
IDocument interface, 273, 275
if attribute, 119
ILoggingEventListener

interface, 252, 283
images

associating with specific launch
configuration types, 336

registries for, 362
Implementors option, 319
Import dialog box, 81, 339
Import feature, 80, 82, 83
Import option, 308
importing

external projects, 80–83
preferences, 37
SDK plug-ins, 224, 226

includeEmptyDirs
attribute, 120, 121

includes attribute, 122, 123,
129, 130

incoming mode, 162, 165
incoming/outgoing mode, 165
incremental builders, 335
incremental compilation, 111
Incremental Find Next

option, 309
Incremental Find Previous

option, 309
indexing help files, 337
info() method, 70
-Init target, 136
init() method, 289, 291, 303
initializing state, 291
Inline option, 315
Inspect option, 320
installing CVS (Concurrent

Versions System), 324–332
CVSNT on Windows, 329
Cygwin and SSH installation

on Windows, 33
on Mac OS X, 328
on UNIX and Linux, 324,

325, 327

overview, 324
troubleshooting problems

with, 332
Tomcat, 182

Integer.parseInt() method, 62
integration build, 14
interfaces, extracting, 99,

100, 101
internal extension points, 334
internal targets, 136
“internal,” use of word in

package name, 236
invokeAndWait() method, 349
invokeLater() method, 349
IOExceptions, 70
IPluginDescriptor object, 236
IRule, 267
ISO8601 format, 73
IStructuredSelection, 288
ITableLabelProvider

interface, 296
IWordDetector interface, 267
IWorkbenchWindow

interface, 241
IWorkbenchWindowActionDel-

egate, 237, 238, 239, 240
IWorkspace interface, 236

J

Jakarta project, 178
jar -cvf log4jsrc.zip utility, 244
jar attribute, 123
jar command, 183
JAR filename, 243
JAR files

specifying which to search
for, 130

wrapping in plug-in, 242
Jar target, 135
Java

classes, 22, 24
code completion

features, 24, 25
evaluation of

dependencies, 111
projects, 20, 21
using Make (build tool)

with, 111
Java Build Path Control

option, 224

Java Build Path option, 198,
243, 350

Java build paths, 337
Java Builder Output option, 227
Java Class Selection dialog, 258
Java comparators, 336
Java compiler (javac.exe), 112
Java Development Kit

(JDK), 112
Java Development Toolkit

(JDT), 6, 7, 16
Java editors, 16, 255, 338
.java files, 227
Java keyword scanner, 262
Java Native Interface

(JNI), 345
Java option, 319
Java perspective, 18
Java program

debugging, 27–30
running, 26

Java projects, creating, 20, 21
Java Runtime Environment

(JRE), 112
Java scrapboook page, 31
Java Snippet Imports dialog

box, 31
Java Source Attachment

option, 244
Java Structure Compare

section, 163
Java virtual machine

(java.exe), 112
Java Virtual Machine

(JVM), 345
java.exe (Java virtual

machine), 112
java.util.Timer class, 357
JavaBean, using with JSP, 205
javac (Java compiler), 111
javac.exe (Java compiler), 112
Javadoc, defining completion

processors, 338
Javadoc comments, 32, 33, 97,

108, 135
Javadoc partition, 262
Javadoc target, 135
javax.servlet.http.HttpServlet

superclass, 198
JDBCAppender, 71
JDK (Java Development Kit), 112

376 INDEX

JDT (Java Development
Toolkit), 6, 7, 16

JFace, 362, 363, 364, 366
architecture of, 362
building applications

using, 363, 364, 366
JFace utility classes, 241
JFace wrapper, 240
JRE (Java Runtime

Environment), 112, 337
JSP directives, 181
JSP expressions, 180
JSP scriptlets, 179
JSP tags, 180
JSPs

overview, 179, 180, 181
programming with, 198, 199,

202, 205, 207
data validation and

conversion, 199
debugging JSPs, 207
multiproject build

settings, 198
robust string handling, 202
using JavaBean with

JSP, 205
JUnit library, 242
junit property, 126
JUnit testing framework, 43, 44

implementing public
methods in, 58–62

method stubs, 44–46
test cases, 49, 50–52, 54
testing in, 54–57
unit tests, 44–46

JUnit TestRunner classes, 134
JUnit tests, 84, 85, 134
JUNIT variable, 153
JUnit Wizard, 46
JVM, 122, 134
JVM (Java Virtual

Machine), 337

K

keyboard shortcuts, 338, 355
Keyboard Shortcuts option, 322
keyword scanner, 262
kill command, 328

L

Label Decorations option, 224
label decorators, 149
label providers, 285, 296
LabelProvider class, 296, 297
language neutrality, 10
lastIndexOf() method, 274
Launch Configuration

options, 254
launch configurations, 336
layout manager, 357
layouts, 72, 73, 358
lazy loading, 222
lib directory, 117
Libraries tab, 243, 350
licenses, open source, 6, 7
lightweight methodology, 40
Link to Folder option, 189
linked folders, editing web.xml

with, 188
Linux, installing CVS on, 324,

325, 327
listener list, 298
ListenerList class, 300
listeners, creating, 347
listeners list, of IAction

interface, 241
lists, pattern, 122
local access, 324
local history, 52, 54
location attribute, 127, 130
Lock the Toolbars option, 321
locking files, 145, 174
log4j

configuring, 74, 75
logging with, 68, 69
using with Eclipse, 75–77

log4j configuration file, 150
log4j JAR file, 242
log4j library, 242, 243, 244
log4j logger, 95
LOG4J variable, 153
log4j.rootLogger, 274
Log4jPlugin class, 252, 304
Log4jPluginResources.proper-

ties file, 279
Log4jUtil class, 252
Log4jView class, 253, 282, 285
LogFactor5 program, 279
Logger.getLogger() method, 70

Logger.getRootLogger() static
method, 70

loggers, 70, 71
logging

Tomcat, 185
with log4j, 69

LoggingEvent objects, 288
LoggingListener class, 283
LoggingModel class, 252,

298, 300
Long.parseLong() method, 199
lowercase, forcing classpath

to, 128

M

Mac OS X, installing CVS
on, 328

main menu, 18
main preference page, 302
main toolbar, 18
main() method, 68, 164
mainLoop method, 358
MainPreferencePage

class, 253, 302
Make (build tool), 109–112, 140
man chmod command, 326
Manifest Editor, 254, 256
Mark as Merged

option, 164, 166
markers, 335, 339
MCV architecture, 178
memento, 291, 294, 295
menuAboutToShow()

function, 292, 293
menubarPath property, 239
MenuManager class, 365
menus, 18, 237–240

adding, 286
bars for additional menus, 355
creating, 355
defining own behaviors for

items on, 362
drop-down, 355
filling, 294
quick reference tables, 308

message attribute, 121
message pump, 347
MessageDialog class, 241
messages, of Ant (build tool), 138
method stubs, 44, 45

INDEX 377

methods
renaming, 96, 97, 98
stubs for, 84

mnemonics, 355, 367
mock objects, 193
model changes, 283
Model component, 178
models, 298
Model-View architecture, 283
Modify Attributes and Launch

dialog box, 158
modifying

files, permission for, 145, 174
perspective defaults, 281

monumental methodology, 40
More Info button, 222
mouse events, 293
Move option, 308, 312
multiple developers. See team

development
multiple files, deleting, 121
multiproject build settings, 198
multithread debugging, 208, 209
myenv prefix, 128
myMethod() method, 155
.mxsd extension, 255

N

name attribute, 114, 119, 209
native library, 345
natural-language text

analyzers, 337
Navigate menu options, 318
Navigator view, 18, 19
nested elements, 114, 115
nesting, in XML vs. HTML, 113
NetInfo utility, 329
New Class Wizard, 34, 260
new code formatters, 337
New dialog box, 84, 339
New Editor option, 256
New File dialog box, 132
New Folder dialog box, 188
New Java Class dialog, 187
New Java Class Wizard, 23
New Java Project Wizard, 21
New Make (NMAKE build

tool), 109
New option, 308
New Plug-in Project Wizard, 242

New Project Wizard, 226, 253
New Window option, 321
Next Match option, 318
Next option, 318
nightly build, 14
NMAKE (New Make build

tool), 109
No ID or Name Is Necessary

option, 256
nonvirtual tables, 284
Normal toolbar, 239
Notepad, 222
NTEventLogAppender, 71
ntsec authentication option, 331
number (#) symbol, 129
NumberFormatException, 67

O

object files, 109
Object Technologies

International (OTI), 5
object2Vector() method, 92
ObjectManager class, 168

and value objects, 86
implementing, 90–95

ObjectManager factory
method, 91

ObjectManager update()
method, 95

ObjectManager.java option, 97
ObjectManagerTest test case, 89
obsolete extension points, 334
om.save() method, 209
online help, 348
Open Declaration option, 318
Open External Javadoc

option, 318
Open Perspective option, 321
Open Project option, 320
Open Resource option, 318
open source, 6, 7
Open Super Implementation

option, 318
Open Type Hierarchy

option, 318
Open Type in Hierarchy

option, 318
Open Type option, 318
Open With menu, 260
open() method, 366

openInformation() method, 241
opening tags, 113
OpenSSH package, 331
operating system, 15
optimistic locking, 145
optimize attribute, 124
optional.jar, 117
Order and Export tab, 243
Order button, 136
order of execution, 110
Order Targets dialog box, 136,

137, 138
org subdirectory, 244
org.apache.ant classpath, 242
org.apache.ant wrapper

plug-in, 250
org.apache.xerces plug-in, 242
org.eclipse.... extension

points, 335
org.eclipse.ant.core plug-in, 221
org.eclipse.swt.events

package, 347
org.eclipse.ui.perspectiveExten-

sions, 281
org.eclipse.ui.views extension

point, 280
org.eclipseguide.astronomy

package, 134
org.eclipseguide.helloplugin

project, 236
org.eclipseguide.helloplugin.

HelloPlugin, 229
org.eclipseguide.log4j

package, 252
org.eclipseguide.log4j.decora-

tors package, 252
org.eclipseguide.log4j.editor

package, 252
org.eclipseguide.log4j.edi-

tor.contentassist
package, 252

org.eclipseguide.log4j.edi-
tor.scanners package, 253

org.eclipseguide.log4j.popup.
actions package, 253

org.eclipseguide.log4j.prefer-
ences package, 253

org.eclipseguide.log4j.views
package, 253

org.eclipseguide.persistence
package, 89, 134

378 INDEX

org.eclipseguide.simpleplugin_
1.0.0 subdirectory, 222

org.eclipseguide.swt Java
class, 353

org.junit plug-in, 242
Organize Imports option, 310
origin of Eclipse, 4, 5, 6
OTI (Object Technologies

International), 5
outdated files, 105
outgoing mode, 165
Outline view, 19, 21
output attribute, 123
output folder, 106
Override and Update option, 166
Override/Implement Methods

option, 310
Overview page, 230, 233
overwrite attribute, 120

P

package attribute, 125
Package Explorer, 21, 83, 255

defining class variables
with, 43, 44

hiding plug-ins from menu
of, 226

revealing plug-in source code
with, 224

Package Explorer view, 149, 351
Package Name, 255
package name, 236
Package Navigator, 80
pair programming, 40, 80
paragraph tags, 113
Parameter Hints option, 310
parameters, removing, 155
parsing text, 262
partition scanners, 261, 262, 264
partitions, 261
parts, 254
Password Server (pserver), 329
Paste option, 309
patches, 167 169
path attribute, 130
PATH environment variable, 112
paths

absolute, 118, 127
in UNIX, 120
relative, 118, 127

specifying for Ant (build
tool), 129, 130

pattern lists, 122
patterns

adding to version control
ignore list, 338

wildcards in, 129
PDE (Plug-in Development

Environment), 223
importing SDK plug-ins, 224
preparing Workbench, 224
using Plug-in Project

Wizard, 226, 228
PDE Runtime Error Log view, 274
percent sign (%), 72
permission, to modify

files, 145, 174
Persistence class, 85
persistence component,

extending, 83–95
creating factory method, 84
creating test suite, 89
creating unit test class, 84
implementing ObjectMan-

ager class, 90–95
Star test case, 88, 89
working with astronomy

classes, 85–88
persistence components, 41, 42
Persistence project, 80, 105, 153
Persistence/bin setting, 107
PersistenceServices class, 101
perspective defaults,

modifying, 281
perspectiveExtensions

settings, 282
perspectives, 16–18

changing, 19–20
defining new, 340

pessimistic locking, 145, 174
platform neutrality, 10
Platform Plug-in Developer

Guide, 255
Platform runtime, 9
Platform search path, 336
pluggable look-and-feel, 344
Plug-in Details option, 222
Plug-in Development

option, 226
Plug-in Manifest

Editor, 230, 254

Dependencies page, 256
Extension page, 334

plug-in manifest file
(plugin.xml), 221–244

Plug-in Name, 243
Plug-in perspective, 229
Plug-in Project, 223
Plug-in Project Wizard, 226,

228, 253
plug-in registry, 222
Plug-in Runtime Library, 227
plugin.properties file, 221, 236
plugin.xml (plug-in manifest

file), 230, 244
plugin.xml (plug-in

manifest), 221, 222, 228
plugin.xml file, 255, 260
plug-ins, 3, 177, 219–306

Hello, World, 228, 230, 231,
233, 237

anatomy of, 220
and editors, 254–269, 271, 275

adding an icon, 259, 260
adding colors, 261, 264, 267
content assist, 271
defining editor

extension, 255, 256
preparing editor class, 255
token manager, 269

and extension points, 220
binary, 225
creating, 20, 222
debugging, 231
defined, 220
deploying, 246
extension points for, 334,

340, 341
deprecated, obsolete, and

internal, 334
id attribute, 334, 340, 341

ID of, 227, 238
lifecycle of, 222
loading, 222
log4j library, 242–244
overview, 3, 177, 219, 220
plug-in class, 304
Plug-in Development Envi-

ronment (PDE), 223, 224,
226, 228
importing SDK plug-ins, 224
preparing Workbench, 224

INDEX 379

plug-ins (continued)
Plug-in Development Envi-

ronment (PDE) (continued)
using Plug-in Project

Wizard, 226, 228
See also PDE

plug-in fragments, 10
preferences, 301–303

editor preference page, 303
main preference page, 302

source code for, 224
views, 279–300

label providers, 296
models, 298
modifying perspective

defaults, 281
overview, 279
receiver thread, 300
table framework, 289–294
View class, 282–283, 286, 289

wrapping JAR files in, 242
Plug-ins and Fragments tab, 254
PMC (Project Management

Committee), 6
POP_UP option, 355
populating widgets, 362
pop-up menus, 340
POST requests, 193
predefined properties, 127
preference store, 278
preferences, 301–303

editor preference page, 303
handling changes, 278
main preference page, 302
when using PDE, 224

Preferences dialog, 269, 340
Preferences option, 322
Preferences page, accelerator

configurations, 338
Preferences pages, 251
-Prep target, 136
Preview button, 98
Preview option, 155
Previous Match option, 318
Previous option, 318
Print option, 308
Printer.class, 111
Printer.java, 111
printf() function, 72
private attribute, 125
.project file, 150, 153

Project Management Committee
(PMC), 6

Project menu options, 320
project nature, 9
project sets, handlers for reading

and writing, 338
projects, 15, 16

Ant (build tool), 118, 119
sharing with CVS (Concur-

rent Versions System),
146–149, 152
adding and committing

files, 149
checking project out of

CVS, 152
creating repository

location, 146
wizards for associating with

team providers, 338
Projects tab, 198
projects, external, 80
properties

Ant (build tool), 126
of projects, editing, 243

Properties dialog box, 43
Properties Editor, 245
properties file, 133
Properties option, 308, 320
PropertiesAssistant class, 252,

271, 273
PropertiesConfiguration

class, 252, 275–277
PropertiesDocumentProvider

class, 252, 275
PropertiesEditor class, 252,

260, 277
PropertiesPartitionScanner

class, 252
property build.number, 120
property pages, 340
protected attribute, 125
Provider Name, 229, 243
proxies, 240
ps cax command, 326, 327–328
pserver, 147
pserver (Password Server), 329
pserver remote access, 327
pseudo-targets, 110
public attribute, 125
public methods,

implementing, 58, 60–62

Pull Up option, 315
Push Down option, 315

Q

Quick Fix option, 45, 310
quotation marks, 114

R

RandomAccessFile class, 66
Read Access option, 319
read() method, 46, 50–59,

154, 155
Rebuild All option, 320
Rebuild Project option, 320
rebuilds, forcing, 110
receiver thread, 300
ReceiverThread class, 252, 300
red, green, blue (RGB)

format, 271
Redo option, 309, 312
redundant code, reducing, 131
RefactorExtract Interface

option, 99
refactoring, 154, 156, 157,

95–102, 264
Refactorings menu

options, 312, 319
RefactorRename option, 97
RefactorUndo option, 98
References option, 319
Reflection Tutorial, 90
registries, 15, 222, 362
relative paths, 118, 127
relpersistencepath, 132
remote access, 326, 327
removing

parameters, 155
source.log4j.jar property, 245

Rename dialog box, 97
Rename option, 308, 312
renaming

classes, 96–98
JAR filename, 243
methods, 96–98

repairers, 277
repository location, 146
reproducibility, 104
request.getParameter()

method, 199

380 INDEX

Required Plug-in Entries
folder, 225

Reset Perspective option, 322
resource disposal, 347
resource move operation, 335
Resource perspective, 17–19
Resource(s) by Name option, 151
Restore Defaults button, 304
retargetable action, 278
retrieving versions, 172
Revert option, 308
Review Options window, 330
revision history, 145
RGB (red, green, blue)

format, 271
RollingFileAppender, 71
root loggers, specifying, 74
RowLayout layout, 358
rule-based scanning, 262
RuleBasedPartitionScanner

class, 262–264
RuleBasedScanner class, 267
rules, custom, 267

defined, 109
Run Ant option, 116
Run As option, 320
Run dialog, 351
Run History option, 320
Run Last Launched option, 320
Run menu, 336
Run menu options, 320, 321
Run option, 320
Run to Line option, 321
run() method, 241, 357
Runnable, 357
Runtime option, 117
Runtime page, 230
Runtime page, of manifest

editor, 243
Run-time Workbench, 231, 260

S

Sample Menu, 231
SampleAction class, 239–241
sampleGroup level, 238
sampleMenu level, 238
Save All option, 308
Save As option, 308
Save option, 308
Save Perspective As option, 322

save() method, 88, 91, 92, 201
save(Object o, int key)

method, 83
saveState() method, 289, 291
saving state, 291
say() method, 27
schemas, 255
scopes, 338
script editor, 115
scriptlets, JSP, 179
SDK (Software Development

Kit), 11
SDK plug-ins, importing, 224,

226
search and replace feature, 156
Search dialog, adding tabs to, 338
Search menu options, 319
Search option, 319
Search view, custom sorting

options in, 338
searching help, 337
Select Additional Tasks

window, 329
Select All option, 309
Select Components window, 329
Select Packages screen, 331
SelectionEvent, 348
SelectionListener, 348
SelectionLister, 354
self-hosted, defined, 233
separating source and build

directories, 105, 107
separators, in menus, 238
serializing, 291
Server Components, 329
server.xml file, 191
Service Status dialog box, 330
servlet container, 178, 179
servlets

creating and testing, 187, 188
overview, 181
programming with, 198, 199,

202, 204, 208, 209
data validation and

conversion, 199
debugging servlets, 204,

208, 209
multiproject build

settings, 198
robust string handling, 202

setFieldMap() method, 91, 92

setFocus() method, 289, 293
setMaximized() method, 355
setMinimized() method, 355
setter methods, generating

automatically, 86
setUp() method, 46, 49, 59
setXXX() methods, 86, 205
SGML (Standard Generalized

Markup Language), 113
Share Project with CVS

Repository dialog box, 147
Shell class, 345, 346
shell window, 358
shells, 241
Shift Left option, 310
Shift Right option, 310
shortcut toolbar, 18
shortcut, 15, 18
Show Editors option, 321
Show In option, 318
Show in Resource History

option, 159
Show Only Extension Points

from the Required Plug-ins
option, 256

Show Outline option, 318
Show Tooltip Description

option, 310
Show View dialog, 281
Show View option, 321
simple projects, 20
SingleLineRule class, 264
Singleton pattern, 236
Smalltalk, 5
SMTPAppender, 71
SocketAppender, 71
Software Development Kit

(SDK), 11
Software Updates option, 322
Sort Members option, 310
sorting widgets, 362
source code

 creating executable program
from, 109

 extending persistence
component, 83–95

creating factory method, 84
creating test suite, 89
creating unit test class, 84
implementing ObjectManager

class, 90–95

INDEX 381

source code (continued)
Star test case, 88, 89
working with astronomy

classes, 85–88
for plug-ins, 224
helping debugger locate, 336
hot-swapping, 232
importing external

project, 80–83
open, 6, 7
refactoring, 95–102

extracting an
 interface, 99–101

future refactoring, 102
renaming a class, 96–98

source control
See also CVS (Concurrent

Versions System)
need for, 144

source directory, separating from
build directory, 105, 107

Source Folder, 227
Source Folder option, 107
Source menu options, 310
Source page, 106, 231
Source page, of manifest

editor, 243
source.log4j.jar property, 245
sourcefiles attribute, 125
sourcepath attribute, 125
sourcepathref attribute, 125
SourceViewerConfiguration

class, 275
specialized events, 335
src directory, 106, 150, 242
src/java directory, 244
srcdir attribute, 123
SSH, installing on Windows, 330
SSH remote access, 326
SSH server, 147
ssh-host-config command, 331
stable build, 14
StackLayout layout, 358
Standard Generalized Markup

Language (SGML), 113
Standard Widget Toolkit

(SWT), 240, 344
See also SWT

Star test case, 88, 89
Star.java class, 85
Start Menu folder, 329

Start Tomcat tool button, 184
Start Working in the Branch

box, 173
state, initializing and saving, 291
static factory method, 100
status codes, for debugger, 336
status messages, of Ant (build

tool), 138
StatusLineManager class, 365
step filters, 29
Step Into button, 29
Step into Selection option, 321
Step Over button, 29
Step Return button, 29
Step With Filters button, 29
String equals() method, 87
string handling, 202
string2Vector() method, 203
StringTokenizer class, 202
Structure Compare outline

view, 162
structured content provider, 298
stubs for methods, 84
styles, 346
sub-canvases, 346
subdirectories, for plug-ins, 222
Submit button, 194
Sun Microsystems, 344
Sun’s Java Development Kit

(JDK), 112
Sun’s Reflection Tutorial, 90
Surround with try/catch Block

option, 311
Swing, 344
SwingToolkit class, 349
Switch to Editor option, 322
SWT (Standard Widget Tool-

kit), 344–350, 353, 356, 357
and events, 347
and threads, 348, 349
architecture of, 345, 346, 347
building and running SWT

programs, 350
overview, 9
relationship with JFace, 362
resource disposal, 347
tables, 284
using, 353, 356, 357
what it is, 344
widget creation, 346

SWT Toolbar class, 366

SWT.BAR style argument, 355
SWT.FULL_SELECTION style

bit, 290
SWT.H_SCROLL style bit, 290
swt.jar, 350
SWT.SINGLE style bit, 290
SWT.V_SCROLL style bit, 290
SWTException, 349
swt-pi.jar file, 350
syncExec() method, 349
synchronization modes, 165
Synchronize Repository

feature, 158
Synchronize with Repository

feature, 162
synchronizing

local files with latest on CVS
server, 153, 154

with repository, 162
syntax coloring, 261, 264, 267
Sysdeo Tomcat plug-in, 183, 185
system tray, 15
Systems applet, 118

T

table framework, 289–294
table of contents files, 337
TableColumn class, 292
TableLayout algorithm, 292
tables, 284
TableViewer class, 285
TableViewPart class, 253, 282,

289, 294, 296
tabs

adding to Search dialog, 338
configuring group of for spe-

cific launch configuration
types, 336

tags, 119
HTML, 113
JSP, 180
XML, 113

Target Platform list, 256
targetID, 282
targets, 109

Ant (build tool), 119, 136
internal, 136
Make (build tool), 109

Task List view, 280
Task List.viewShortcut, 282

382 INDEX

tasks, Ant (build tool), 119–126
Tasks view, 21
team development, 140, 141

See also CVS (Concurrent Ver-
sions System)

source control, 144, 145
tearDown() method, 46, 49
templates

defining, 338
for wrapping log4j

library, 242
to create plug-ins, 228

test cases, creating, 49, 50, 52
test suite, creating, 89
TestCase option, 84
test-driven development, 41
testing, 53–55, 57

servlets, 187, 188
Tomcat, 182
web applications, 192–196

testRead() method, 46, 54, 67
TestRunner classes, 134
testStar() test method, 89
testString2Vector() method, 203
testVector2String() method, 203
testWrite() method, 46, 60
text, parsing, 262
text editors, 16, 222
text files, 338
TextEditor class, 254–264, 267,

269, 271, 275, 278
adding an icon, 259, 260
adding color, 261, 264, 267
content assist, 271, 274
defining editor

extension, 255, 256
preparing editor class, 255
token manager, 269

threads, and SWT (Standard
Widget Toolkit), 348, 349

tilde (~), 129
timer, creating, 358
timer tasks, 357
Tips and Tricks option, 322
TODAY property, 126, 132
todir attribute, 120
tofile attribute, 120
token manager, 269, 278
token scanners, 261, 264, 267
Token.UNDEFINED token, 264
TokenManager class, 252, 269

tokens, 261
Tomcat, 182, 185

creating and testing
servlets, 187, 188

creating project with JSP
file, 185

placing project under CVS
control, 190

tomcatPluginV21.zip file, 183
toolbarPath property, 239
toolbars, 18, 19, 237, 238,

239, 240
adding actions, 339
adding buttons, 286
defining own behaviors for

items on, 362
filling, 294
shortcut, 18

tooltip, 18
toString() method, 70
tree structures, 335
troubleshooting CVS installa-

tion problems, 332
TSTAMP property, 126, 132
typeMap() method, 93, 94
types, 129

U

UI thread, 348, 349
Uncomment option, 310
Undo feature, 86
Undo option, 309, 312
undoing actions, 165
unimplemented extension

points, 335
unit test class, 84
unit tests, 44, 45, 134
UNIX

file paths in, 120
installing CVS on, 324–325,

327
unless attribute, 119
unread() method, 268
Update feature, 158, 164
Update from Repository

option, 166
Update Manager, 340
Update Site Project, 223
update() method, 91, 154, 155

update(Object o, int key)
method, 83

updated files, resolving conflicts
in, 160

updating widgets, classes for, 362
upgrading Ant in Eclipse, 117
Use an Existing Java Class

option, 258
use attribute, 125
Use Classpath Containers for

Dependent Plug-ins
option, 224

Use Default Port option, 147
Use Specified Module Name

option, 148
Use Supertype Where Possible

option, 315
user interface thread, 284
utility programs, 111

V

VA4J (Visual Age for Java), 5
Validate Connection on Finish

option, 147
validate-save and validate-edit

operations, 335
validation of data, 199
value build.number+1, 120
value objects, 86, 91
value partitions, 277
ValueScanner class, 253, 266, 267
variables, 29, 30

classpath, 36, 133, 153
environment, 153
environmental, 128

Variables view, 30
Vector class, 45
vector2String() method, 204
vectors, 91
verbose attribute, 120, 121, 124
verification schemes, 340
version attribute, 125
version control ignore list, 338
version control. See source control
versions, 14, 171–173

adding labels, 171
difference form branches, 152
retrieving, 172

vi (text editor), 222
View class, 282, 283, 286, 289

INDEX 383

View component, 178
viewer classes, 362
viewer factories, 335
ViewLabelProvider class, 253,

296, 297
ViewPart class, 289
views, 16–19, 279–283, 286,

289, 296, 298, 300
changing, 19, 20
difference from editors, 254
label providers, 296
models, 298
modifying perspective

defaults, 281
overview, 279
receiver thread, 300
table framework, 289–294
View class, 282, 283, 286, 289

Visual Age for Java (VA4J), 5
VM Arguments text box, 351

W

WAR file, 191
warn() method, 70, 76
watch expression, 30
Watch option, 320
waterfall methodology, 40
web development tools, 178–16

building web
application, 191–209
See also JSPs, programming

with; servlets, pro-
gramming with

design and testing, 193, 196
web application directory

structure, 191, 192
Sysdeo Tomcat

plug-in, 183, 185

Tomcat, 182, 185
creating and testing

servlets, 187, 188
creating project with JSP

file, 185
placing project under CVS

control, 190
web sites

development schedule, 15
downloads, 14

web.xml file, 188
WEB-INF directory, 192
Websphere Studio Application

Developer, 11
Welcome option, 322
Welcome page, 230
Which Method Stubs Would You

Like to Create option, 85
whitespace rule, 267
WhitespaceDetector

class, 253, 265
widgetDefaultSelected

method, 354
widgets, 345, 346

See also SWT (Standard Wid-
get Toolkit)

creating, 346
widgetSelected method, 354
wildcards, in patterns, 129
Window menu options, 321
Windows

installing CVSNT on, 329
installing Cygwin and SSH

on, 330
WinZip, 244
wizards, 21

defining, 338, 362
in Export dialog, 339
in Import dialog, 339

in New dialog, 339
Plug-in Project

Wizard, 226, 228
that associate projects with

team providers, 338
WordDetector class, 253
WordRule class, 267
work directory, 192
Workbench, 9, 16–20, 162, 224
working sets, 42
workspace, 9
Workspace Plug-ins list, 254
workspace root resource, 236
wrapping JAR files, 242
Write Access option, 319
write() method, 46–54, 58,

154, 155
writeBytes() method, 66
writeChars() method, 66

X

Xerces library, 242
XML (Extensible Markup

Language), 233, 238
code created by Extension

Wizard, 260
overview, 113–115

XML editor, 185, 231, 255
XMLBuddy, 185
XMLBuddy plug-in, 194
XP (eXtreme Programming), 40
.xsd extension, 255

Z

zip files, 246

	Eclipse in Action: A Guide for the Java Developer
	Cover

	Contents
	foreword
	preface
	acknowledgments
	about this book
	about the title
	about the cover illustration
	PART 1 USING ECLIPSE
	1 Overview
	1.1 Where Eclipse came from
	A bit of background
	The Eclipse organization
	Open source software

	1.2 What is Eclipse?
	The Eclipse architecture
	Language and platform neutrality

	1.3 What's next
	1.4 Summary

	2 Getting started with the Eclipse Workbench
	2.1 Obtaining Eclipse
	2.2 Eclipse overview
	Projects and folders
	The Eclipse Workbench

	2.3 The Java quick tour
	Creating a Java project
	Creating a Java class
	Running the Java program
	Debugging the Java program
	Java scrapbook pages

	2.4 Preferences and other settings
	Javadoc comments
	Format style
	Code generation templates
	Classpaths and classpath variables
	Exporting and importing preferences

	2.5 Summary

	3 The Java development cycle: test, code, repeat
	3.1 Java development tools methodology
	Testing is job 1
	A sample application and working sets

	3.2 The JUnit unit testing framework
	Method stubs and unit tests
	Creating test cases
	How much testing is enough?
	Implementing the public methods

	3.3 Further adventures in debugging
	Setting breakpoint properties
	Finding and fixing a bug

	3.4 Logging with log4j
	Loggers, appenders, and pattern layouts
	Configuring log4j
	Using log4j with Eclipse

	3.5 Summary

	4 Working with source code in Eclipse
	4.1 Importing an external project
	4.2 Extending the persistence component
	Creating a factory method
	Creating the unit test class
	Working with the astronomy classes
	The Star test case
	Creating a test suite
	Implementing the ObjectManager class

	4.3 Refactoring
	Renaming a class
	Extracting an interface
	Future refactoring

	4.4 Summary

	5 Building with Ant
	5.1 The need for an official build process
	Creating the build directory structure

	5.2 Make: A retrospective
	5.3 The new Java standard: Ant
	A very brief introduction to XML
	A simple Ant example
	Projects
	Targets
	Tasks
	Properties
	File sets and path structures
	Additional Ant capabilities

	5.4 A sample Ant build
	Creating the build file, build xml
	Performing a build
	Debugging the build

	5.5 Summary

	6 Source control with CVS
	6.1 The need for source control
	6.2 Using CVS with Eclipse
	Sharing a project with CVS
	Working with CVS
	Versions and branches

	6.3 Summary

	7 Web development tools
	7.1 Developing for the Web
	The web, HTML, servlets, and JSP
	JSP overview
	Servlet overview

	7.2 Tomcat and the Sysdeo Tomcat plug-in
	Installing and testing Tomcat
	Installing and setting up the Sysdeo Tomcat plug-in
	Creating and testing a JSP using Eclipse
	Creating and testing a servlet in Eclipse
	Placing a Tomcat project under CVS control

	7.3 Building a web application
	The web application directory structure
	Web application design and testing
	Programming with servlets and JSPs

	7.4 Wrapping up the sample application
	7.5 Summary

	PART 2 EXTENDING ECLIPSE
	8 Introduction to Eclipse plug-ins
	8.1 Plug-ins and extension points
	Anatomy of a plug-in
	The plug-in lifecycle
	Creating a simple plug-in by hand

	8.2 The Plug-in Development Environment (PDE)
	Preparing your Workbench
	Importing the SDK plug-ins
	Using the Plug-in Project Wizard

	8.3 The "Hello, World" plug-in example
	The Plug-in Manifest Editor
	The Run-time Workbench
	Plug-in class (AbstractUIPlugin)
	Actions, menus, and toolbars (IWorkbenchWindowActionDelegate)
	Plug-ins and classpaths

	8.4 The log4j library plug-in example
	Attaching source
	Including the source zip in the plug-in package

	8.5 Deploying a plug-in
	8.6 Summary

	9 Working with plug-ins in Eclipse
	9.1 The log4j integration plug-in example
	Project overview
	Preparing the project

	9.2 Editors (TextEditor)
	Preparing the editor class
	Defining the editor extension
	Adding an icon
	Adding color
	Token manager
	Content assist (IContentAssistProcessor)
	Putting it all together

	9.3 Views (ViewPart)
	Adding the view
	Modifying perspective defaults
	View class
	Table framework
	Label providers (LabelProvider)
	Models
	Receiver thread

	9.4 Preferences (FieldEditorPreferencePage)
	Main preference page
	Editor preference page

	9.5 Plugin class
	9.6 Summary

	A Java perspective menu reference
	B CVS installation procedures
	B.1 Installing CVS on UNIX and Linux
	Creating the CVS repository
	Setting up SSH remote access
	Setting up pserver remote access

	B.2 Installing CVS on Mac OS X
	B.3 Installing CVSNT on Windows
	B.4 Installing Cygwin CVS and SSH on Windows
	B.5 Troubleshooting the CVS installation
	B.6 Backing up the CVS repository

	C Plug-in extension points
	D Introduction to SWT
	D.1 What is the Standard Widget Toolkit?
	D.2 SWT architecture
	Widget creation
	Resource disposal

	D.3 SWT and events
	D.4 SWT and threads
	D.5 Building and running SWT programs
	D.6 Using SWT
	The BasicFramework class
	The MainApp class
	Trying the example

	E Introduction to JFace
	E.1 Architecture
	E.2 Building a JFace application
	JFaceExample class
	ExitAction class

	index
	Team DDU
	important.pdf
	Local Disk
	articlopedia.gigcities.com

	1.pdf
	Local Disk
	file:///C|/Documents and Settings/me/デスクトップ/How everything works - GetPedia.htm

